MAYOR **Caroline Simmons**

CITY OF STAMFORD **ZONING BOARD** LAND USE BUREAU 888 WASHINGTON BOULEVARD STAMFORD, CT 06904 -2152 RECEIVED

DIRECTOR OF OPERATIONS **Matthew Quiñones**

> Land Use Bureau Chief Ralph Blessing

Principal Planner Vineeta Mathur (203) 977-4716 vmathur@stamfordct.gov

Associate Planner **Lindsey Cohen** (203) 977-4388 Icohen@stamfordct.gov

March 17, 2023

Ms. Theresa Dell, Chair, Planning Board Land Use Bureau, City of Stamford 888 Washington Blvd. Stamford, CT 06904

MAR 17 2023

PLANNING BOARD

RE: Application 223-15 – Sweetspot Stamford LLC and A &F High Ridge LLC, 111-123 High Ridge Road, Stamford, CT - Special Permit, Applicant is seeking approval to operate a boutique hybrid cannabis dispensary providing service to both qualified medical cannabis patients and adult-use consumers. Property is located in the C-N Zone.

Dear Ms. Dell:

In accordance with Section C6-40-10 of the Charter of the City of Stamford, the above captioned Application for a Special Permit is hereby referred to the Planning Board of the City of Stamford for its advisory report.

A public hearing has not yet been scheduled. Referral comments should be filed with the Zoning Board Office by *April 21*, 2023.

If you have any questions, please feel free to contact me at (203) 977-4716.

Sincerely,

Vineeta Mathur Principal Planner

Lisa L. Feinberg

Partner

Phone: 203.252.2677 Fax: 203.325.8608

LFeinberg@carmodylaw.com

1055 Washington Blvd.

4th Floor

Stamford, CT 06901

March 15, 2023

VIA HAND & ELECTRONIC DELIVERY

Ms. Vineeta Mathur Principal Planner, Land Use Bureau City of Stamford 888 Washington Boulevard Stamford, CT 06901 VMathur@StamfordCT.gov

Re: Special Permit Application

111-123 High Ridge Road, Stamford, CT (Parcel ID 000-0932) (the "Property") Sweetspot Stamford, LLC ("Sweetspot") and A&F High Ridge, LLC (collectively, the "Applicants")

Dear Ms. Mathur:

Our firm represents the applicant Sweetspot, a prospective tenant of approximately $2,412\pm$ square feet of office/retail space on the above-referenced Property. The Property is owned by the applicant A&F High Ridge, LLC. The Property is located in the Neighborhood Business District (C-N) and Master Plan Category 7 (Commercial – Arterial). It is $46,361\pm$ square feet ($1.06\pm$ acres) and improved with a $31,846\pm$ square foot, two-story, multitenant retail building and a $14,310\pm$, three-story, multitenant retail building.

Pursuant to Section 5.E of the Zoning Regulations of the City of Stamford, and as required by Section 148(c) of Public Act 21-1, An Act Concerning Responsible and Equitable Regulation of Adult-Use Cannabis, the Applicants seek Special Permit approval to allow Sweetspot to operate a Hybrid Cannabis Retailer on the portion of the Property it seeks to lease. There are no site improvements associated with this request.

¹The Stamford Zoning Regulations do not specifically identify this use, which only became legal in Connecticut in 2021. In such circumstances, the legislation provides that the municipality must analogize the proposed use with another similar use in existence in the City's regulations. Specifically, Section 148(c) of the Act states: "Unless otherwise provided for by a municipality through its zoning regulations or ordinances, a cannabis establishment shall be zoned as if for any other similar use, other than a cannabis establishment, would be zoned." ZONING REGS. Sec. 4.E ("Medical Marijuana Dispensaries are allowed by Special Permit approval of the Zoning Board only within certain commercial and manufacturing Zoning Districts of the City of Stamford, as shown in Appendix A, Table II of these Regulations."); Appx. A, Table II, Use 133.1. Because the Zoning Regulations do not currently provide regulations for Hybrid Retailers, the Land Use Bureau has determined the next closest use is Medical Marijuana Dispensary.

The Applicants also request Special Permit approval pursuant to Section 12.K.4.e of the Zoning Regulations to be exempt from the sidewalk requirements contained in Section 12.K.² First, because High Ridge Road is a State highway, a sidewalk is not required on the portion of the Property that borders this road.³ Additionally, the enclosed Statement of Findings details why installing a sidewalk on Halpin Avenue would (1) not be appropriate in light of the existing conditions of the site, (2) not further the goal of providing a pedestrian network, and (3) create safety hazards for pedestrians.

Moreover, due to the small size of the space to be leased by Sweetspot and the absence of proposed site improvements, the Applicants are not subject to certain mobility requirements in Section 12 of the Zoning Regulations. Specifically, bicycle parking is not required because no changes of use, additions, and/or substantial renovations involving 5,000 square feet or more of Gross Floor Area are proposed. See Section 12.J.1. Lastly, because no additional off-street parking is required in connection with this Application, the Applicants are not required to provide electric vehicle charging stations. See Section 12.L.1.

In connection with the attached application, enclosed please find:

- Letters of Authority from Sweetspot Stamford, LLC and A&F High Ridge, LLC
- Application fees in the amount of \$1,460 (\$460 Special Permit application fee and \$1,000 Public Hearing fee)
- Twenty-one (21) copies of the following application form and associated schedules:
 - o Application for Special Permit Approval;
 - Schedule A List of Plans;
 - o Schedule B Introduction and Project Overview;
 - Schedule C Statement of Findings;
 - Schedule D Legal Description of Property;
 - Schedule E Zoning Data Chart;

²The sidewalk requirements in Section 12.K may not be applicable to the Applicants. Pursuant to Sweetspot's estimated costs based on other buildouts, renovations and alterations are not anticipated to exceed \$250,000. However, because the ultimate determination of the final cost of renovations and alterations will be made by the Building Department at the time it issues a building permit, the Applicants do not yet know this total. Accordingly, it is necessary for them to seek Special Permit approval at this juncture.

³It should also be noted that there is already a sidewalk on this portion of the Property. It is unclear if the sidewalk complies with the requirements set forth in Section 12.K of the zoning regulations.

- Schedule F Existing Zoning Map; and
- Schedule G Aerial Photograph of Property.
- One (1) full-size and twenty (20) half-size copies of the following plans:
 - Zoning Location Survey prepared by Edward J. Frattaroli, Inc., entitled, "Zoning Location Survey Prepared for LDG Properties, 111-123 High Ridge Road, Stamford Connecticut," dated December 20, 2016, and revised through March 3, 2023;
 - o Floor Plans prepared by Katie Schrider Design, dated March 7, 2023, with the plan titles listed on Schedule A; and
 - Security Layout Plan prepared by Sweetspot Stamford, LLC, dated March 8, 2023, with the plan titles listed on Schedule A.
- Twenty-one (21) copies of the Traffic and Parking Study Prepared by SLR, dated March 3, 2023, entitled "Traffic and Parking Study."

Please let me know if you have any questions or require additional materials. As always, thank you for your time and attention regarding this matter.

Very truly yours,

Lisa Feinberg

Lisa L. Feinberg

Enclosures.

cc: R. Blessing

Sweetspot Stamford, LLC

Lisa L. Feinberg

Partner

Phone: 203.252.2677 Fax: 203.325.8608

LFeinberg@carmodylaw.com

1055 Washington Blvd.

4th Floor

Stamford, CT 06901

March 15, 2023

VIA HAND & ELECTRONIC DELIVERY

Ms. Lindsey Cohen
Associate Planner, Land Use Bureau
City of Stamford
888 Washington Boulevard
Stamford, CT 06901
LCohen@StamfordCT.gov

Re: Request to be Heard by Planning Board 111-123 High Ridge Road, Stamford, CT (Parcel ID 000-0932) (the "Property") Sweetspot Stamford, LLC ("Sweetspot") and A&F High Ridge, LLC (collectively, the "Applicants")

Dear Ms. Cohen:

Our firm represents the applicant Sweetspot, a prospective tenant of approximately $2,412\pm$ square feet of office/retail space on the above-referenced Property. The Property is owned by the applicant A&F High Ridge, LLC. The Property is located in the Neighborhood Business District (C-N) and Master Plan Category 7 (Commercial – Arterial). It is $46,361\pm$ square feet ($1.06\pm$ acres) and improved with a $31,846\pm$ square foot, two-story, multitenant retail building and a $14,310\pm$, three-story, multitenant retail building.

In July, 2021, the Governor signed Public Act No. 21-1, entitled "An Act Concerning the Responsible and Equitable Regulation of Adult-Use Cannabis" (the "Cannabis Bill"), which allows for the sale of adult-use cannabis in the State of Connecticut. The Cannabis Bill establishes a "hybrid retailer" as "a person that is licensed to purchase cannabis and sell cannabis and medical marijuana products ("Hybrid Retailer"). The Applicants seek Special Permit approval to allow Sweetspot to operate a Hybrid Retailer on the portion of the Property it seeks to lease. ¹ The

¹The Stamford Zoning Regulations do not specifically identify this use, which only became legal in Connecticut in 2021. In such circumstances, the legislation provides that the municipality must analogize the proposed use with another similar use in existence in the City's regulations. Specifically, Section 148(c) of the Act states: "Unless otherwise provided for by a municipality through its zoning regulations or ordinances, a cannabis establishment shall be zoned as if for any other similar use, other than a cannabis establishment, would be zoned." ZONING REGS. Sec. 4.E ("Medical Marijuana Dispensaries are allowed by Special Permit approval of the Zoning Board only within certain commercial and manufacturing Zoning Districts of the City of Stamford, as shown in Appendix A, Table II of these Regulations."); Appx. A, Table II, Use 133.1. Because the Zoning Regulations do not currently provide regulations for Hybrid Retailers, the Land Use Bureau has determined the next closest use is Medical Marijuana Dispensary.

Applicants also request Special Permit approval pursuant to Section 12.K.4.e of the Zoning Regulations to be exempt from the sidewalk requirements contained in Section 12.K. There are no site improvements associated with this request.

In connection with the attached application, enclosed please find:

- Eight (8) copies of the Application for Special Permit Approval and associated schedules.
- Eight (8) half size copies of the following plans:
 - Zoning Location Survey prepared by Edward J. Frattaroli, Inc., entitled, "Zoning Location Survey Prepared for LDG Properties, 111-123 High Ridge Road, Stamford Connecticut," dated December 20, 2016, and revised through March 3, 2023;
 - o Floor Plans prepared by Katie Schrider Design, dated March 7, 2023, with the plan titles listed on Schedule A; and
 - Security Layout Plan prepared by Sweetspot Stamford, LLC, dated March 8, 2023, with the plan titles listed on Schedule A.

I have also submitted an electronic copy of the following:

• The Traffic and Parking Study Prepared by SLR, dated March 3, 2023, entitled "Traffic and Parking Study."

We look forward to advice as to when the Planning Board will consider this proposal. At that time, I kindly ask that members of our development team and I be given an opportunity to briefly describe the proposal. Please contact me should you have any questions. As always, thank you for your time and attention regarding this matter.

Very truly yours,

Lisa Feinberg

Lisa L. Feinberg

Enclosures.

cc: Sweetspot Stamford, LLC

March 3, 2023

Vineeta Mathur Principal Planner, Land Use Bureau City of Stamford 888 Washington Blvd. Stamford, CT 06901

Re:

A&F High Ridge, LLC Special Permit Application

111-123 High Ridge Road (the "Property")

Dear Ms. Mathur:

A&F High Ridge, LLC is the owner of the above-captioned Property, for which a special permit application to operate a Hybrid Cannabis Retailer will be filed. Please consider this letter as written confirmation that the undersigned has authorized the attorneys of Carmody Torrance Sandak & Hennessey, LLP, with offices located at 1055 Washington Boulevard, Stamford, Connecticut 06901, to file the enclosed special permit application with the City of Stamford on its behalf in connection with the Property. Thank you for your acknowledgement of said authority.

Sincerely,

A&F High Ridge, LLC

Anthony Longhitano

By:

Duly Authorized

Signature:

Anthony Longby and (Mar 3, 2023 09:59 EST)

Email: anthonylonghitano@mac.com

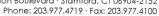
March 3, 2023

Vineeta Mathur Principal Planner, Land Use Bureau City of Stamford 888 Washington Blvd. Stamford, CT 06901

Re: Sweetspot Stamford, LLC
Special Permit Application

111-123 High Ridge Road (the "Property")

Dear Ms. Mathur:


Sweetspot Stamford, LLC is the prospective tenant of approximately 2,400 square feet of office/retail space on the Property, for which a special permit application to operate a Hybrid Cannabis Retailer will be filed. Please consider this letter as written confirmation that the undersigned has authorized the attorneys of Carmody Torrance Sandak & Hennessey, LLP, with offices located at 1055 Washington Boulevard, Stamford, Connecticut 06901, to file the enclosed special permit application with the City of Stamford on its behalf in connection with the Property. Thank you for your acknowledgement of said authority.

Sincerely,

Sweetspot Stamford, LLC

Benjamin Herbst
By: Benjamin Herbst
Duly Authorized

\$460.00

Fee Schedule

Special Permit 20,000 sq. ft. or less

APPLICATION FOR SPECIAL PERMIT

Complete, notorize, and forward thirteen (13) hard copies and (1) electronic copy in PDF format to Clerk of the Zoning Board with a \$1,000.00 Public Hearing Fee and the required application filling fee (see Fee Schedule below), payable to the City of Stamford.

NOTE: Cost of required advertisements are payable by the Applicant and performance of required mailing to surrounding property owners is the sole responsibility of the applicant. LAND RECORDS RECORDING FEE: \$60.00 for First page - \$5.00 for each additional page)

	Special Permit r	nore than 20,000 sq. f	t.		1,00 port	0.00 + \$30 per 00 sq. ft. or tion thereof in ess of 20,000 sq.	
APPLICA	ANT NAME (S):		mford, LLC and A&F Hig	h Ridge, LLC			
		Agent: Daniel Cha	apple, Carmody Torrance Sa	andak & Hennessey LLP, 10	055 Washing	ton Blvd., Stamfo	rd CT 06
		c/o Agent: (203)	252-2695				2010070
IS APPL	ICANT AN OWI	IER OF PROPERT	Y IN THE CITY OF STAME	ORD? Yes - A&F High R	Ridge, LLC o	owns property ir	Stamfo
			OWNED BY APPLICANT	444 400 10 1 001			
			ective tenant of a portion	(0).			
ADDRES	SS OF SUBJEC	T PROPERTY. 111	I-123 High Ridge Road (F	Parcel ID 000-0932)			
			ighborhood Business)				
			L PLANS: See Schedule	A			
			vritten statement describing		Special Permit	nursuant to Section	
be exempt	it for a Hybrid Ret	ailer pursuant to Sec.	5.E of the Stamford Zoning Re-	request) gulations and Public Act 21-1; S Project Narrative and Statemen atersecting streets, lot depth	nt of Findings	(Schedules B and 0	3).
be exempt	it for a Hybrid Ret	ailer pursuant to Sec.	5.E of the Stamford Zoning Re-	gulations and Public Act 21-1; S	nt of Findings	(Schedules B and 0	3).
be exempt LOCATIO See Sc NAME AI	it for a Hybrid Ret from the sidewalk DN: (Give bound shedule D	ailer pursuant to Sec. requirements of Section daries of land affect DF OWNERS OF Al	5.E of the Stamford Zoning Re-	project Narrative and Statementersecting streets, lot depth	nt of Findings	(Schedules B and 0	3).
be exempt LOCATIC See Sc NAME AI	it for a Hybrid Ret from the sidewalk DN: (Give bound thedule D ND ADDRESS (requirements of Section of Land affect of Land affe	5.E of the Stamford Zoning Re- ion 12.K. Please find enclosed ed, distance from nearest in	pulations and Public Act 21-1; S Project Narrative and Statement In REQUEST:	nt of Findings	(Schedules B and 0	3).
be exempt LOCATIO See Sc NAME AI 11 St DOES AN	it for a Hybrid Ret from the sidewalk DN: (Give bound thedule D ND ADDRESS C NAME & ADDR &F High Ridge tamford, CT 06 NY PORTION O REENWICH, DA	requirements of Section of Iand affect of Iand Iand Iand Iand Iand Iand Iand Iand	5.E of the Stamford Zoning Rei ion 12.K. Please find enclosed ed, distance from nearest in LL PROPERTY INVOLVED LOCATION 111-123 High R AFFECTED BY THIS APPL	pulations and Public Act 21-1; S Project Narrative and Statement of the section o	nt of Findings is and Town ((Schedules B and C	nber)

Zoning Board · Land Use Bureau Government Center · 888 Washington Boulevard · Stamford, CT 06904-2152 Phone: 203.977.4719 · Fax: 203.977.4100

SIGNED: NOTE: Application cannot be scheduled for Public Hearing until 35 days have elapsed from the date of referral to the Stamford Planning Board. If applicant wishes to withdraw application, please notify the Zoning Board at least three (3) days prior to Public Hearing so that the Board may have sufficient time to publicize the withdrawal. STATE OF CONNECTICUT March 15 ss STAMFORD COUNTY OF FAIRFIELD Personally appeared Daniel the truth of the contents thereof, before me. signer of the foregoing application, who made oath to Public - Commissioner of the Superior Court FOR OFFICE USE ONLY APPL. #: ___ Received in the office of the Zoning Board: Date:

Revised 09/02/2020

Schedule A List of Plans

- Zoning Location Survey prepared by Edward J. Frattaroli, Inc., titled, "Zoning Location Survey Prepared for LDG Properties, 111-123 High Ridge Road, Stamford Connecticut," dated December 20, 2016, and revised through March 3, 2023.
- Floor Plans prepared by Katie Schrider Design, dated March 7, 2023, titled:
 - o "C: Cover Page;"
 - o "ID.1: Floor Plan;"
 - o "ID.2: Store Front Entry/Side Windows;"
 - o "ID.3: Floor Plan Client Queuing;" and
 - o "ID.4: Floor Plan Employee Path of Travel."
- Security Layout Plan prepared by Sweetspot Stamford, LLC, dated March 8, 2023, titled:
 - o "Proposed Architectural Layout;"
 - o "Security Overlay (Cameras, Access control, Security, etc.);" and
 - o "Operational Zones overlay (Public, Ops, Limited Access, Restricted Access)."

Schedule B Introduction & Project Overview

Sweetsp::t

Sweetspot Stamford

Table of Contents

Introduction	1
Project Information	1
Statement of Goals	1
Project Quick-Facts	1
Background Information	2
The Connecticut Cannabis Industry	2
Corporate Structure	2
Licensure & Eligibility	3
Company Profile	4
Sweetspot Brands LLC	4
Key People	4
Good Neighbor Policy	5
Connections to Stamford	5
Cannabis Industry Experience	<i>6</i>
Operational Excellence	7
Boutique Retail Service	7
Medical Professionalism	8
In-Store Efficiency	8
Business Plans	9
Operating Hours	9
Staffing Chart	9
Environmental Sustainability Plan	11
Retail Sustainability	11
Ecologically Conscious Operations	11
Plastic-Free & Paperless Policies	12
Sustainable Construction Practices	12
Supporting Sustainable Agricultural Practices	12
Site Information	13
111 High Ridge Road	14
Accessibility	15
Automobile Access	15
Public Transit Access	16
Pedestrian Access	16
Traffic Impact & Safety Analysis	17
Parking Analysis	18
Design & Security	20

Facility Design & Layout	20
Preliminary Floor Plan	23
Design Aesthetic	24
Security Plan	25
Security Overlay	25
Limited Access to Facility	26
Secure Facility Layout	26
Security Management System	27
Intrusion Alarm System	27
Video Surveillance System	28
Security/IT Closet	29
Information Technology Security	29
Secure Storage	30
Vault Specifications	30
Vault & Storage Access	30
Safes	31
Transportation of Regulated Products	31
Receiving Inventory	31
Security-Related Policies & Practices	32
Security Equipment Inspection, Testing and Maintenance	32
Local Law Enforcement Policy	32
Inventory Management Procedures	32
Secure Opening & Closing Procedures	33
Workplace & Employee Security Policies	35

2

Introduction

PROJECT INFORMATION

Statement of Goals

Sweetspot Stamford LLC ("the Applicant") seeks approval to operate Sweetspot Stamford, a boutique hybrid cannabis dispensary providing service to both qualified medical cannabis patients and adult-use consumers in the City of Stamford at 111 High Ridge Road.

The Applicant is provisionally licensed by the State of Connecticut to operate an Adult-Use Cannabis Medical Hybrid Retail business in Stamford. The Applicant now seeks approval of the City of Stamford Planning Board and Zoning Board for the proposed cannabis retail facility outlined in this document. To receive final licensure from the State, the Applicant will require a Special Permit from the Stamford Zoning Board.

Sweetspot Stamford will provide Stamford residents with a distinct option to meet their needs as either medical cannabis patients or adult use consumers which improves upon the options currently available to residents from existing market participants. Smaller than the currently approved cannabis dispensary operations elsewhere in Stamford and featuring an intimate, consumer-oriented operations model, Sweetspot Stamford will provide residents with a level of personal service not currently available elsewhere. Sweetspot Stamford will also improve accessibility to customers and, most importantly, medical patients who reside in central and northern portions of Stamford.

Sweetspot Stamford's holistic design approach is informed by years of cannabis industry experience. Patients and customers will enjoy an unrivaled in-store experience and access to the highest quality products available in a sophisticated and welcoming space designed around the principles of safety, security, and sustainability. Sweetspot Stamford's proposed facility will safely integrate into the surrounding community and offer Stamford residents access to a combination of professionalism, service, and convenience unmatched by any other cannabis retailer in Connecticut.

This document will articulate the ways in which the Applicant's proposed facility and plans will serve the interests of the City of Stamford and its residents by providing a safe and secure hybrid retailer that will integrate seamlessly into the physical infrastructure and social fabric of the city.

Project Quick-Facts

Applicant Name	Sweetspot Stamford LLC		
Proposed Business	Adult-Use Cannabis Medical Hybrid Retailer		
Proposed Facility Location	111 High Ridge Road Stamford, CT 06905		
Size of Proposed Facility	2,412 Square Feet		
Zoning District	C-N (Neighborhood Business District)		

BACKGROUND INFORMATION

The Connecticut Cannabis Industry

The establishment of first the legal medical use and subsequent adult-use cannabis markets in Connecticut represent two of the most significant economic and social policy developments in Connecticut in generations. These developments present governments with a challenge equal to the magnitude of the opportunity afforded by this profound change. It is crucial for municipalities across the State to entrust appropriate and experienced private sector partners to enter their communities as responsible market participants in order to realize the full scope of economic, social justice, healthcare, and quality of life benefits made possible by these new markets.

The proper partner will provide a plan to effectively address the healthcare needs of medical patients, maximize local economic benefits, provide a range of products and customer service expertise to educate and support adult use customers, and apply the principles of social justice and restorative justice in its operations to ensure that cannabis legalization benefits residents from communities disproportionately impacted by harmful superannuated cannabis prohibition policies. These goals must be achieved along with the practical requirements for long-term financial viability and while navigating real-world challenges relating to urban planning, public opinion, environmental responsibility, and public health & safety considerations. Sweetspot Stamford has such a plan.

The team behind Sweetspot Stamford and its parent company, Sweetspot Brands LLC ("Sweetspot") are uniquely qualified to deliver on the possibilities of this generational opportunity for the City of Stamford, its medical cannabis patients, and residents. The foundation of the Sweetspot Stamford team's suitability to excel in the operation of a hybrid cannabis retailer are the deep personal ties to Stamford amongst the company's senior leadership. Along with the unique commitment and focus afforded by the opportunity to make a lasting positive impact in their hometown, the Sweetspot team brings with it a depth of experience establishing cannabis businesses as early entrants into newly established cannabis markets in several states along the east coast. That invaluable experience is made more impactful by the team's experience establishing and operating multiple different types of cannabis businesses, including medical, adult-use, and hybrid cannabis retail businesses.

Corporate Structure

Sweetspot Stamford LLC ("Sweetspot Stamford") is a joint venture between CT Plant Based Compassionate Care LLC ("CT Plant") and CT SE Holding Company LLC ("CTSE"). Both CT Plant and CTSE are Social Equity Joint Ventures between Sweetspot Brands LLC ("Sweetspot") and Stamford resident John O'Leary. In accordance with Connecticut State requirements, John O'Leary, as the disproportionately impacted area ("DPI") social equity applicant, holds a 65% ownership stake of both CT Plant and CTSE with Sweetspot holding ownership of the remaining 35%.

{S7492231} 2

Licensure & Eligibility

On September 16, 2022, CT Plant was awarded a provisional cannabis cultivation license (License No. ACCE.0000014) pursuant to Section 21a-420(o) of the Connecticut "Responsible and Equitable Regulation of Adult-Use Cannabis Act" or "RERACA."

Section 5 of Public Act 22-103, which amended and supplemented RERACA, provides that a cultivator licensed under Section 21a-420(o) of RERACA may create two equity joint ventures in any cannabis establishment licensed business other than cultivation. Effectively, this provision entitles licensees under Section 21a-420(o) to open two retail cannabis dispensaries in Connecticut, subject to local approval, approval by the CT Social Equity Council, and final state licensure from the CT Department of Consumer Protection. CT Plant has formed two equity joint ventures, Sweetspot West Hartford LLC and Sweetspot Stamford LLC, for the purpose of opening retail cannabis dispensaries in West Hartford, CT, and Stamford, CT.

{S7492231} 3

COMPANY PROFILE

Sweetspot Brands LLC

The Applicant presents the City of Stamford a unique opportunity to partner with a business featuring not only a wealth of experience and demonstrable success in the cannabis industry but deep knowledge of and longstanding personal connections with Stamford.

Sweetspot's owners, principals, and team members bring a deep level of experience operating toptier cannabis cultivation, manufacturing, and dispensary facilities with the highest levels of professionalism. Sweetspot currently has an interest in 11 cannabis licenses across five states in the Northeast. Sweetspot affiliates and subsidiaries currently operate a hybrid cannabis dispensary and cultivation & processing facility in Rhode Island, an adult-use dispensary in Maine, a medical cannabis dispensary in Maryland, and a medical-use Alternative Treatment Center in New Jersey, with additional fully licensed projects in development.

Key People

Jason Webski: Chief Executive Officer

As Sweetspot Brands LLC's founder, Jason has over five years of experience creating the business and operations frameworks for a variety of cannabis industry businesses including both adult use and medical use retailers, cultivation facilities, and manufacturing operations.

Carl Allison: Chief Financial Officer

Carl has over 30 years' experience in financial management, accounting, and strategic business operations management with five years of direct cannabis industry experience.

Blake Costa: Chief Operating Officer & Director of Security

Blake served for 12 years in the military where he specialized in security at high value locations worldwide including U.S. embassies. Based on military and Federal Government security protocols, Blake developed a comprehensive security plan specifically for cannabis facilities at operations along the East Coast.

Peter Franklin, Vice President of Retail Operations

Dispensary operations will be overseen by Peter Franklin. Peter has spent the past four years actively managing several licensed Cannabis Dispensary Facilities across several states. He has expertise in state mandated inventory tracking systems, detailed record keeping, efficient dispensing operations and employee training. He is currently overseeing management and operations at four highly rated cannabis retail facilities in Maine, Maryland, and New Jersey, and Rhode Island.

Ben Herbst: Chief Business Development Officer

With a professional background in real-estate, Ben has successfully secured municipal approvals for new cannabis business development projects in eight states.

Bryan Lucas: General Counsel & Director of Government Affairs

Bryan has served as a Deputy Attorney General and Special Assistant to the Director in the NJ Office of the Attorney General, Division of Law. Bryan developed a regulatory compliance and government affairs toolkit which he now utilizes as Sweetspot's in-house counsel.

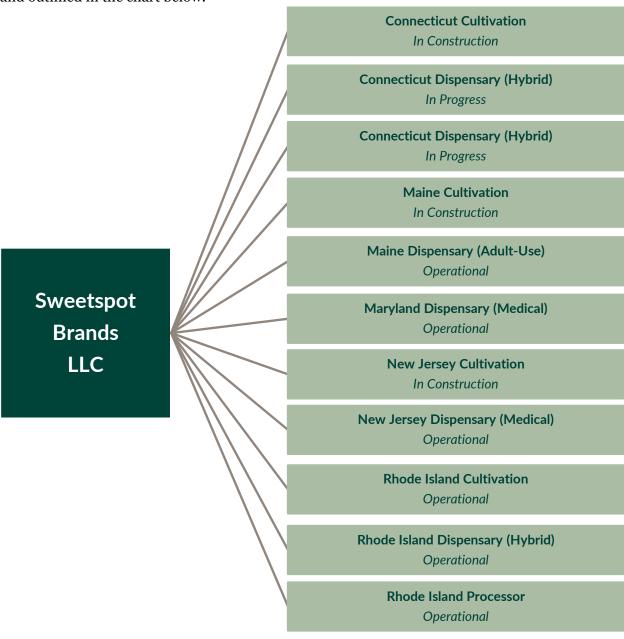
Good Neighbor Policy

Sweetspot's highest priority when entering a new community is to become good neighbors and partners to the public. Sweetspot's overarching "Good Neighbor Policy" commits our cannabis businesses to meet or exceed requirements for security, transparency, accountability, and quality control. Sweetspot has made significant investments in technologies and practices to minimize our managed businesses' carbon footprints and reduce the consumption of energy, water, and other natural resources. Sweetspot also outlines best practices to minimize local environmental impact by properly managing odor, waste disposal, and both vehicular and pedestrian traffic. To best effect the Good Neighbor Policy, we establish strong relationships and open lines of communication with local law enforcement and emergency services. Sweetspot is also committed to being open and responsive to all concerns raised by public safety officials, local government, neighboring businesses, and the public. Our commitment to maintaining positive community relationships extends to hiring and staffing policy; we strive to hire locally and provide customers and non-customer locals alike with information and educational opportunities to ensure a safe and comfortable environment for all.

Sweetspot Stamford's policies, plans, and best practices are adapted from the lessons learned through real-world cannabis industry experience of Sweetspot and Sweetspot affiliates. Neither Sweetspot nor any Sweetspot affiliate has ever received a violation for failure to meet regulatory requirements, or any other reason, and proudly fosters meaningful working relationships with regulatory agencies, local governments, and public safety officials everywhere it does business.

Sweetspot Brands and its affiliates also regularly form university partnerships with institutions of higher education. These partnerships pursue a range of objectives that both benefit the local population and address important social concerns relating to the cannabis industry. Ongoing university partnerships include an internship program established at the University of Rhode Island and serving as a board member on the Eastern Connecticut State University Cannabis Sustainability Board.

Connections to Stamford


The opportunity to provide quality healthcare access and an unrivaled adult use customer service experience to the people of Stamford is especially meaningful to the Sweetspot team as nine key contributors to our efforts were born and raised in Stamford. Stamford residents will undoubtedly benefit from the commitment to excellence the Sweetspot leadership brings with it to this opportunity for putting their expertise to work for the benefit of their hometown.

Blake Costa	Chief Operating Officer & Director of Security		
Ben Herbst	Chief Business Development Officer		
Alex Michalowskij	Facilities Manager		
John O"Leary	Social Equity Partner		
Michael O'Leary	Founding Board Member		
Jason Tucker	Director of Cultivation		
Chris Tzoannopoulos	Social Equity Partner		
Eugenia Tzoannopoulos	Franchise Development Director		
Jason Webski	Chief Executive Officer		
David Werdelin	Construction Manager		

Cannabis Industry Experience

Sweetspot and Sweetspot affiliates possess unique insights garnered through years of experience operating cannabis businesses across multiple license types as early entrants in newly established state cannabis markets. This informative experience has produced a wealth of institutional knowledge concerning both refined and efficient management of cannabis business and the regulatory and practical challenges facing business, local government, and members of the public during the crucial and occasionally confusing early stages of market development. As a result, Sweetspot Stamford is fully prepared to execute proven business and operations strategies to provide patients and customers an unrivaled dispensary experience.

Sweetspot and affiliated subsidiaries hold an interest in eleven cannabis licenses across five states and outlined in the chart below.

Operational Excellence

Sweetspot Stamford will provide patients and customers with a boutique level of individual service while retaining the capacity to meet the robust market demand of Stamford and surrounding communities.

Boutique Retail Service

Sweetspot Stamford will offer adult-use customers Sweetspot's unique personalized retail experienced. Sweetspot's collaborative and educational service model is specifically designed to address the needs and concerns of customers who are either new to or returning to cannabis use as well as those frustrated by the experiences they have had with other cannabis products or just looking to ensure they maximize their personal use experience.

Sweetspot's unique approach to guiding customers towards an informed decision that will maximize their experience plays out over three steps.

1. Personalization Quiz

Customers fill out a brief quiz online (www.sweetspotfarms.com) to identify their specific concerns and goals. Sweetspot automatically generates a digital response with a personalized education brochure, identifying strains, products, and terpene blends.

2. Starter Kit

Customers then visit the store and receive a personalized Starter Kit featuring 6 small doses of different varieties curated by in-store guides. Customers track their experience with each varietal and return to the store for discussion with an instore guide.

3. Personalized First Orders

Based on each customers' experience with their Starter Kit, in-store guides suggest customizable products for each customer's first full order.

Medical Professionalism

Medical cannabis patients who entrust Sweetspot Stamford to provide them with access to their care will always receive priority service. Medical patients will find a dedicated check-in area upon entering the facility and will never wait behind adult-use customers to either check in and verify their identity or for access to the retail area of the facility. Medical patients will also find a dedicated sales area in the retail space to ensure they retain priority considerations by staff.

A licensed pharmacist will be available at all operating hours to confer with any medical patient desiring consultation. A dedicated phone line will be established for medical patients to reach either the Dispensary Manager or Pharmacist directly to address any and all questions or problems relating to medical cannabis products or their use.

All staff members, not just the pharmacists, will be thoroughly trained and assessed on the regulatory requirements and standards of professionalism demanded of medical service providers before they ever interface with a member of the public as a Sweetspot Stamford Employee. Training is supplemented by ongoing continuous staff education and periodic reassessments. All staff will command a thorough knowledge of medical cannabis laws and regulations, products and product types, procedures relating to product recalls or adverse reactions, and professional conduct with patients and approved caregivers. Patient dignity and privacy rights, including HIPAA regulations, are of paramount concern to Sweetspot Stamford and Sweetspot Brands management.

In-Store Efficiency

Sweetspot Stamford will operate a facility roughly half the size of the two current approved cannabis retail businesses located in Stamford. The facility's moderate scale will provide sufficient space to serve the needs of Stamford residents while still allowing for staff to focus on the individual concerns of patients and adult-use customers for every transaction.

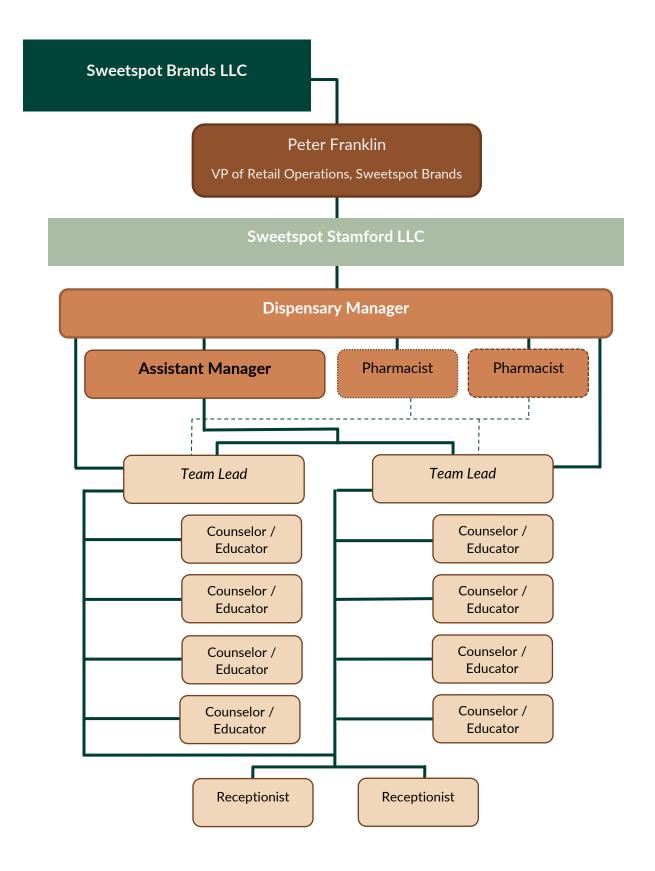
Efficient operations procedures are key to balancing the demands of Sweetspot's quality of service and a robust market of medical patients and adult use consumers. The best quantitative representation of such efficiency is the average transaction time for each visit. The efficacy of Sweetspot operations procedures is made evident by the swift transaction times seen at currently operating affiliate dispensaries.

The chart below displays the average transaction length in 2022 at the two Sweetspot affiliated dispensary facilities that operated for the entire year.

Dispensary Location	Dispensary Type	Total Transactions (2022)	Average Transaction Length [mm:ss]
Olney, Maryland	Medical	23,427	04:06
Portland, Maine	Adult-Use	20,115	04:19
Combined	Combined	43,542	04:12

Sweetspot Stamford will reproduce these outstanding efficiency metrics and enjoy the many positive implications they hold for related considerations ranging from customer sentiment to environmental impact matters including the flow of vehicular and pedestrian traffic.

BUSINESS PLANS


OPERATING HOURS

Day	Hours	Duration	
Monday	10:00 AM - 7:00 PM	9 Hours	
Tuesday	10:00 AM - 7:00 PM	9 Hours	
Wednesday	10:00 AM - 7:00 PM	9 Hours	
Thursday	10:00 AM - 7:00 PM	9 Hours	
Friday	10:00 AM - 7:00 PM	9 Hours	
Saturday	10:00 AM - 7:00 PM	9 Hours	
Sunday	11:00 AM - 5:00 PM	6 Hours	

STAFFING CHART

DISPENSARY STAFFING & COMPENSATION PLAN							
Position	Status	Hourly	Weekly	Annual			
Position		Rate	Hours	Salary/Wages			
Dispensary Manager	Salaried	N/A	40	\$75,000.00			
Assistant Manager	Salaried	N/A	40	\$50,000.00			
Staff Pharmacist 1	Salaried	N/A	40	\$85,000.00			
Staff Pharmacist 2	Salaried	N/A	40	\$85,000.00			
Team Lead 1	Hourly	\$20.00	40	\$41,600.00			
Team Lead 2	Hourly	\$20.00	40	\$41,600.00			
Full Time Patient Counselor / Customer Educator 1	Hourly	\$17.00	40	\$35,360.00			
Full Time Patient Counselor / Customer Educator 2	Hourly	\$17.00	40	\$35,360.00			
Full Time Patient Counselor / Customer Educator 3	Hourly	\$17.00	40	\$35,360.00			
Full Time Patient Counselor / Customer Educator 4	Hourly	\$17.00	40	\$35,360.00			
Full Time Patient Counselor / Customer Educator 5	Hourly	\$17.00	40	\$35,360.00			
Part Time Patient Counselor / Customer Educator 1	Hourly	\$16.00	20	\$16,640.00			
Part Time Patient Counselor / Customer Educator 2	Hourly	\$16.00	20	\$16,640.00			
Receptionist 1	Hourly	\$15.00	35	\$27,300.00			
Receptionist 2	Hourly	\$15.00	35	\$27,300.00			

{S7492231} 9

ENVIRONMENTAL SUSTAINABILITY PLAN

Sweetspot Stamford is committed to honoring and respecting our neighbors, communities, and the planet by minimizing our environmental impact wherever we can. That means putting forward policies and practices to reduce our facility's carbon footprint, limit consumption of energy and scarce resources as much as possible, and to be mindful of our immediate impact on our surroundings and the people and businesses who call them home.

Sweetspot Stamford's commitment to conservation, sustainability, and environmental responsibility extend to all aspects of business operations.

Retail Sustainability

Waste in cannabis packaging has been all too common in this new industry. Sweetspot Brands has worked diligently over the years to achieve eco-friendly packaging while remaining compliant with state regulations. Sweetspot Stamford will minimize the use of petroleum, metal and non-replenishable materials when repackaging bulk flower product. We will likewise seek to partner with licensed cultivators and processors who strive to be eco-friendly in their production and packaging and will only use recyclable materials for exit bags, and educational materials. The Applicant will implement a packaging recycling program to minimize waste as much as possible. To incentivize customers to recycle their packaging, Sweetspot Stamford will create a credit program where customers will receive a percentage of the packaging cost as a store credit whenever they recycle their packaging.

Ecologically Conscious Operations

Sweetspot Stamford is committed to taking innovative approaches to reduce its environmental impact in all facets of operations. Sweetspot Stamford will employ energy efficiency operations policies developed by Sweetspot Brands through substantial investments in technologically sophisticated systems designed to reduce the carbon footprint of its business operations.

Sweetspot Stamford will limit energy and resource consumption through various efficiency strategies and technologies, including:

- Energy efficient LED lighting
- Energy Star (or equivalent) certified appliances and electronics
- Motion-censor controlled interior lighting
- Smart thermostats for interior heating and cooling systems
- Prioritization of vendors and service providers who demonstrate energy efficient practices

Sweetspot Stamford will utilize all these resource-minded strategies in its daily operations and constantly seek new ways to reduce our energy and resource consumption. We are also committed to sharing these best practices with other participants in the local cannabis market, because the health and safety of our community and the planet requires cooperation even amongst competitors.

{87492231}

Plastic-Free & Paperless Policies

Sweetspot Stamford will institute policies towards achieving the goal of being a fully plastic-free workplace. One representative policy is a ban on single-use plastic water bottles by employees in the workplace. Energy efficient water coolers will be provided in the facility and all employees will be gifted reusable water bottles for use both in the workplace and in their private lives.

Sweetspot Stamford will also limit the use of paper and paper goods to the extent possible. Policies aimed at achieving this goal include paperless Human Resources processes, fully digital permitted marketing campaigns, and enrollment in paperless banking and bill-pay options with all vendors.

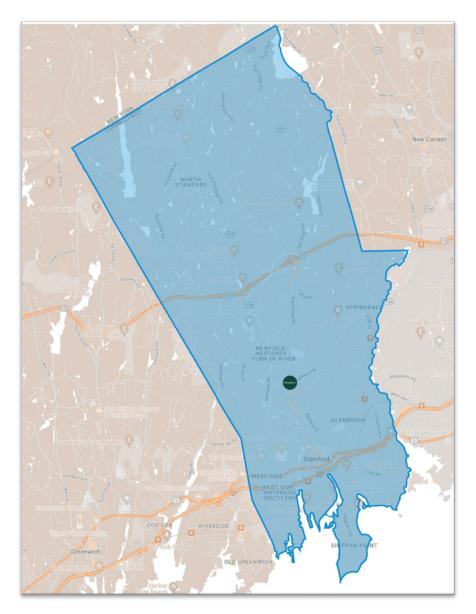
Sustainable Construction Practices

During the Design & Construction phases of our facility buildout, the Sweetspot Stamford team will work with architects, engineers, and general contractors to minimize environmental impact during construction. This will include design features such as 100% energy efficient lighting, light motion sensors in all rooms and corridors to ensure lights are turned off when areas are unoccupied, purchase of recycled furniture and fixtures. Additionally, Applicant will use low Volatile Organic Compounds (VOC) building materials including minimally polluting paints, adhesives, solvents, caulks, wood products, flooring, and sealants. All environmental systems will have an Energy Star rating and utilize remote sensing technology to minimize wasteful use. All excess building materials will be donated to Habitat for Humanity.

Supporting Sustainable Agricultural Practices

Sweetspot Stamford will utilize its buying power to prioritize purchases from cultivators who employ industry-leading agricultural sustainability practices. Sweetspot Stamford will seek to purchase a significant percentage of its products from cultivators and wholesale suppliers who demonstrate that they:

- Minimize water consumption through irrigation recycling systems.
- Utilize energy efficient lighting and equipment such as LEDs.
- Implement sustainable energy sources into their cultivation operations such as solar and wind power.
- Exclude pesticides and other inorganic chemicals from cultivation operations.


Sweetspot Stamford will also explore supporting local community garden projects and other initiatives which bring awareness to sustainable agricultural practices in the Stamford and Fairfield County. This practice is a continuation of efforts by other Sweetspot Brands affiliated companies to highlight sustainable community-based agriculture practices and initiatives in their respective communities.

SITE INFORMATION

The Applicant proposes to operate a hybrid cannabis retail facility located at:

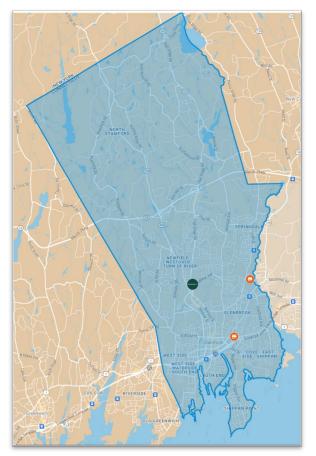
111 High Ridge Road Units 13, 14, 15 Stamford, Connecticut 06905

The applicant has a lease agreement in place with the owner of the property. Execution of the lease agreement is contingent upon final zoning approval by the City of Stamford and subsequent final licensure by the State of Connecticut.

{S7492231} 13

111 HIGH RIDGE ROAD

111 High Ridge Road ("111 High Ridge") is a multi-tenant office & retail building offering 31,300 square feet of leasable commercial space. Sweetspot Stamford will occupy 2,412 square feet on the ground floor.


The remainder of the building is occupied by twelve existing tenants. Tenants include six medical offices, three salons, a liquor store, a learning center, and office space.

123 High Ridge Road is located on the same parcel as 111 High Ridge. The two structures share a large parking lot with driveways opening onto both High Ridge Road and Halpin Ave.

123 High Ridge is a three-story multi-unit office & retail building and features 11,626 square feet of leasable commercial space currently occupied by four tenants including two medical offices, a tutoring center, and an electronics repair shop.

ACCESSIBILITY

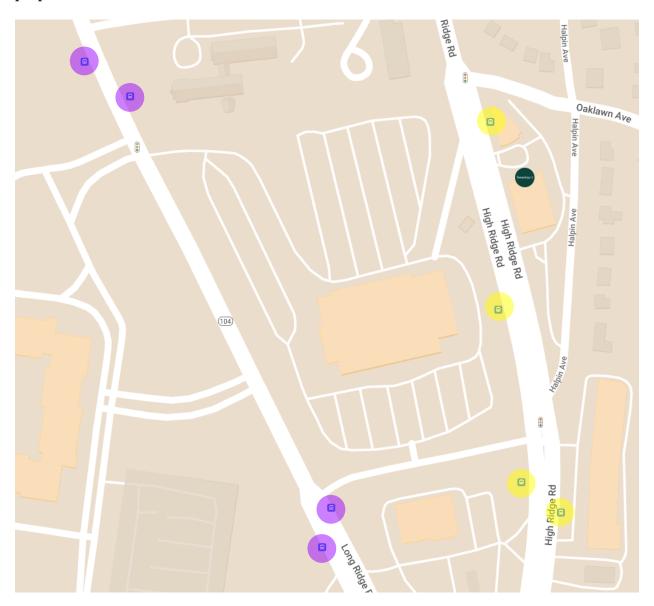
111 High Ridge offers convenient, equitable access for residents living in all areas of Stamford. Sweetspot Stamford improves accessibility compared to currently available options in two important ways. Current approved cannabis retailers are marked with red icons on the map to the left.

First, the facility's central location and excellent access to important arterial routes along the public road network reduce the drive time and distance between a dispensary option and significant portions of central and northern Stamford.

Second, nearby public transportation options equitably improve accessibility for residents who may not own cars or have the ability to drive.

More than a welcome convenience for some, Sweetspot Stamford will reduce barriers to care for many of the community's most vulnerable medical cannabis patients.

Automobile Access


As demonstrated by the green-shaded zone of the map below, virtually of Stamford is within a 15-minute drive of 111 High Ridge.

Public Transit Access

Applicant's facility will enjoy direct access to existing CTtransit bus services. Stops in each direction along CTtransit Route 331 are located within 350 feet of the front entrance of Sweetspot Stamford. Stops along CTtransit Route 336 are also located within a five minute walk of the facility.

In the image below, stops along Route 331 are marked in yellow and stops along Route 336 in purple.

Pedestrian Access

Sidewalks located along High Ridge Road ensure the safety of those transiting to and from the facility on foot, including those accessing the nearby CTtransit bus stops as well as foot traffic to and from other points.

TRAFFIC IMPACT & SAFETY ANALYSIS

The Applicant contracted the services of SLR Consulting ("SLR"), a leading international engineering & environmental sustainability consultancy, to assess the traffic and road safety implications of this proposal. SLR's conclusion was that the increased traffic caused by Sweetspot Stamford can be accommodated by the surrounding roadway system and that no traffic mitigation efforts are necessary.

SLR's findings are supported by a sophisticated level-of-service (LOS) analysis used to assess traffic conditions at the intersections and driveway access points that will be utilized by cars traveling to and from the dispensary. SLR first conducted intersection capacity analysis and queue analysis of current conditions at the proposed site of Sweetspot Stamford. A model of peak hour conditions including traffic generated by Sweetspot Stamford was then developed based on statistical data published by ITE. SLR then compared the current ("Background") and expected ("Combined") conditions. SLRs analysis concluded there to be no expectation for any meaningful degradation of traffic conditions.

It should be noted that LOS conditions rated "D" or above are generally considered to be acceptable road conditions.

Table 3 Capacity Analysis Summary Future (2023) Conditions

	Level of Service						
Intersection/Lane Group	Weekday P.M	l. Peak Hour	Saturday Midday Peak Hour				
	Background	Combined	Background	Combined			
	Sign	alized					
High Ridge Road at Cross Road							
Eastbound Left/Right	В	В	В	В			
Northbound Left/Through	С	С	В	В			
Southbound Through/Right	В	В	В	В			
Overall	В	В	В	В			
•	High Ridge Road	at Oaklawn Avenue		•			
Westbound Left/Right	D	D	D	D			
Northbound Through/Right	С	С	С	С			
Southbound Left	С	С	В	В			
Southbound Through	Α	Α	A	А			
Overall	с	с	с	С			
	Unsig	nalized					
	Oaklawn Avenue	at Halpin Avenue					
Northbound Left/Through/Right	С	С	В	В			
Southbound Left/Right	С	С	С	С			
	High Ridge Road	at Main Driveway					
Westbound Left/Right	D	D	С	С			
Southbound Left	В	В	В	В			
•	Halpin Avenue	at Main Driveway					
Northbound Left	Α	Α	A	А			
Eastbound Left	В	В	В	В			

Notes: LOS calculations were performed using Synchro 11.

PARKING ANALYSIS

The existing parking on the site is legally nonconforming, as confirmed by the Zoning Enforcement Officer, James Lunney. A copy of the letter confirming the parking status is included with the application materials. Notwithstanding this, however, there is more than enough parking to support all of the businesses on the property.

SLR conducted an analysis of current and projected parking demand and the capacity of the lot shared by 111 and 123 High Ridge Road to accommodate the parking needs of current tenants and Sweetspot Stamford. SLR's conclusion is that the uses on the property naturally share parking with different peak demand hours and the existing parking supply is more than sufficient.

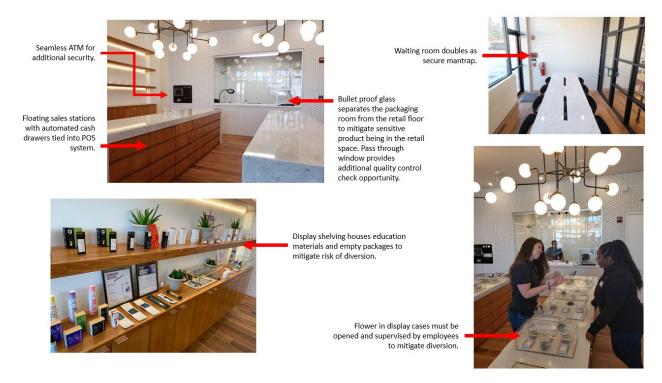
Full parking analysis methodologies and findings are included in the attached document prepared by SLR, 111 High Ridge Road Traffic And Parking Study, but tables summarizing key datapoints are included below.

Table 4 summarizes observed parking capacity at 111 High Ridge.

Table 4 Existing On-Site Parking Counts

Time		On-Site Par	king Spaces	Halpin Ave Parking Spaces	
		Occupied	Available	Occupied	Available
Market Afterna	Before 4:00 p.m.	45	75	12	0
Weekday Afternoon	After 6:30 p.m.	55	65	11	1
Caturday	Before 11:00 p.m.	36	84	9	3
Saturday	After 1:00 p.m.	42	78	8	4

Table 5 and *Table 6* demonstrate the modeled parking use on-site with the inclusion of Sweetspot Stamford on weekdays and weekends respectively.


While both the Applicant and the property manager of 111 High Ridge agree with SLR's findings, the applicant has nonetheless prepared a parking efficiency strategy to maximize on-site parking available for other tenants should their demand significantly increase due to a special event or any other unexpected reason. If necessary, Sweetspot Stamford will require its employees to park off-site and operate a company shuttle between the off-site parking location and 111 High Ridge.

DESIGN & SECURITY

The Sweetspot Stamford team utilized a holistic design approach to seamlessly meet the aesthetic, functional, security, and sustainability needs of the business, patients, customers, and the public. The facility design allows for a comfortable, compassionate, and efficient flow of patients and customers while mitigating the risk of diversion.

FACILITY DESIGN & LAYOUT

Sweetspot Stamford will have a similar layout to the one employed at Sweetspot Brands' Maryland dispensary, pictured below.

Representative of the ways in which security considerations are a focus at every stage of the design process, our floorplan is designed around the establishment of four *zones*, each representing a different level of access to both staff and visitors based upon security considerations. Each division between distinct zones is fully separated by floor to ceiling partitions. Access between each of the four zones outlined below is controlled by RFID enabled security doors.

Public Zone:

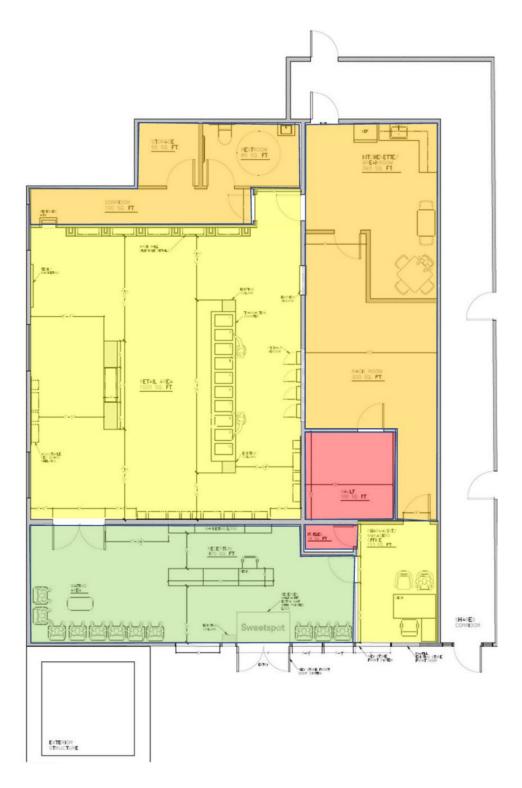
This area is where customers wait to enter the retail and medical retail portions of the facility. This zone acts as a secure pedestrian trap. Access to this area from the main entrance is controlled with magnetically locked doors that can only be controlled by staff members. All staff access is logged to their RFID ID card, creating an electronical log of visitors as they are greeted by staff for age verification.

Medical patients entering the public zone to check-in will find a dedicated check-in station solely for their use. Staff working to greet visitors and verify their ID to ensure their eligibility to enter the dispensary will always check-in newly arrived medical patients before any adult-use customers regardless of who entered this Public Zone first. Medical patients will also be granted access to the retail dispensing zone ahead of any adult-use customers waiting to be granted access. The on-site staff pharmacist will have their office located in the public zone as well to minimize any barriers or wait time for qualified medical patients seeking a consultation with the pharmacist.

Operations Zone:

Only employees with a zone-issued RFID card and legally eligible, qualified patients and customers that have checked in with reception are allowed access to the Operations_Zone. This is where the dispensing of adult use and medical cannabis product takes place as well as product education and consultations between adult use customers and staff members. Medical Patient consultations with the staff pharmacist will take place in the pharmacists' private office located within the broader public zone.

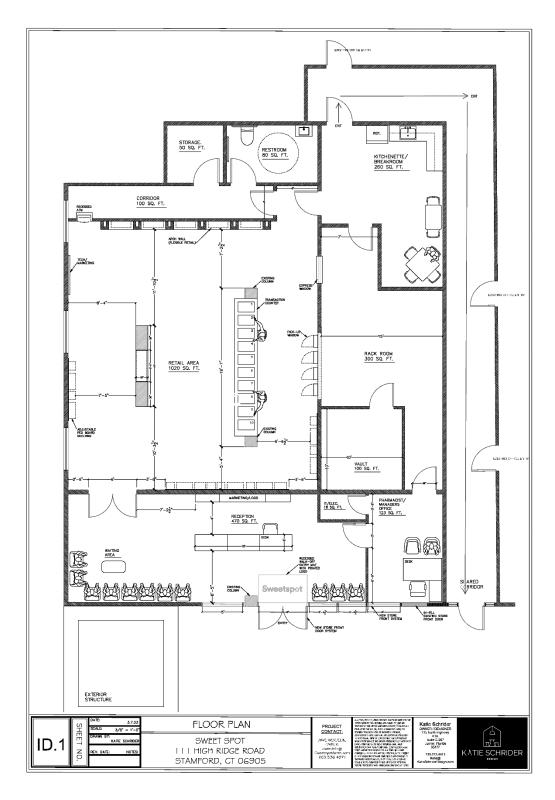
Limited Access Zone:


Only a limited number of employees are allowed in the limited access areas, where regulated products are stored. Each employee's RFID card grants access only to areas which are necessary for them to carry out their duties.

Restricted Access Zone:

The Restricted Access Zone consist of the area where Applicant will maintain all security system equipment and recordings in a secure location to prevent theft, loss, destruction, or alterations in accordance with regulations. Access to this zone will be restricted to persons who are essential to surveillance operations, state regulators, law-enforcement agencies, security system service employees, and officials from State and local government. This area will only be accessible to an absolute minimum number of specifically authorized employees.

{87492231}



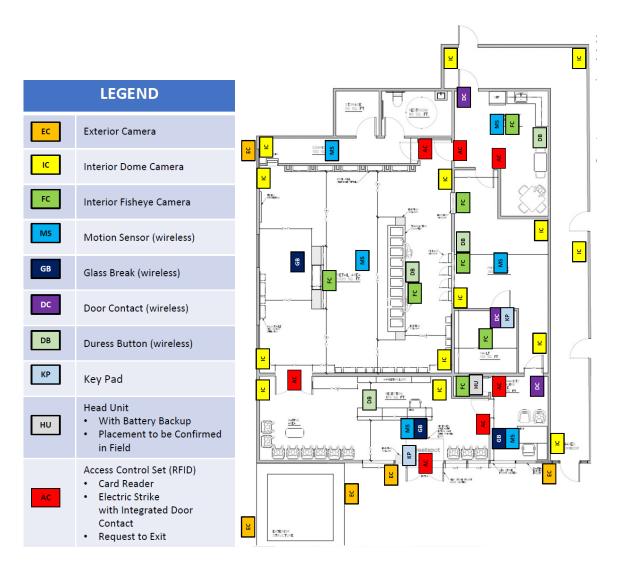
{S7492231} 22

Preliminary Floor Plan

A preliminary floorplan for Sweetspot Stamford is below:

Design Aesthetic

Sweetspot Stamford will feature a welcome and sophisticated look to provide patients and clients with a welcoming and comfortable environment. The design of Sweetspot Brands' recently renovated hybrid dispensary facility in Exeter, Rhode Island reflects the look and feel that will be found at Sweetspot Stamford. Images of the Rhode Island facility are included below for reference.



SECURITY PLAN

The Applicant has experience designing and overseeing the construction and day-to-day operation of safe, secure cannabis dispensaries, cultivation, and processing facilities. While safety and security are a responsibility for every employee and stakeholder at every level in the organization, Applicant's Director of Security ("DoS"), Blake Costa, sets the tone for the organization.

Blake has over 12 years of military experience in the U.S. Marine Corps and the U.S. Army National Guard. Blake's roles included securing U.S. Embassies as a Marine Guard in Pakistan, Italy, Afghanistan, and over a dozen other countries, as well as supporting the Department of State and White House on a variety of missions. In civilian life, Blake has integrated many of the practices used at the federal level in embassies across the globe to protect employees, clientele, product, and property at operational cannabis dispensary and cultivation facilities in Maryland, Maine, New Jersey, and Rhode Island.

Security Overlay

Limited Access to Facility

The Applicant will have policies and procedures in place to ensure all patients and customers have their age and medical program enrollment verified by use of a valid government issued identification. The applicant will require all patient and customer IDs to be scanned on an ID verification scanner which is integrated into the point-of-sale system and will automatically upload the customers pertinent information and flag those which do not meet age requirement. State requirements for tracking qualified medical patient access will be rigorously adhered to.

Sweetspot Stamford will maintain a 1:2 staff-to-visitor ratio within the Operations, with medical patients always being granted priority access ahead of adult-use customers on the facility sales floor.

Secure Facility Layout

Sweetspot Stamford will manage and monitor access control throughout the proposed retail facility with a Verkade access control system. Verkada utilizes hardwired electronic door strikes with encrypted RFID access control sensors. Verkada access control allows the Director of Security to set access levels for each employee, limiting the number of personnel who can access areas where Cannabis or Cannabis Product is stored or handled. Additionally, all doors where cannabis or cannabis product is stored or handled will be of commercial grade metal.

All packaging displayed in publicly accessible areas of the store are for-display-only empty "dummy packaging" and do not contain any product. All regulated goods, including all products containing THC, are secured behind a man trap and are not accessible to visitors entering the store. When a customer wishes to make a purchase, an authorized member of staff will retrieve the product from the secure areas and bring it to the customer at the register at the point of sale.

Only staff members responsible for that function and management will be able to access zones where regulated product is stored via access control settings of the employee's RFID card. Visitors and non-permitted employees may not enter the Limited Access Zone or Restricted Access Zone under any circumstances.

Security Management System

Sweetspot Stamford will utilize Genetec Security Center, a tier one security management software platform utilized by the Federal Government and many state governments to secure critical infrastructure including government offices, corrections facilities, police stations, and public spaces. Sweetspot has implemented Genetec products at regulated cannabis dispensary facilities and a cannabis cultivation & processing facility. Genetec offers a variety of security management applications and allows multiple users to remotely access the system and to operate features such as the intrusion alarm, video surveillance equipment, visitor management tools, license plate reading capabilities, smoke & fire alarm systems management, and other information technology related security features.

Users can review 90+ days of archived footage captured by the Genetec Security Center, download the footage, and print still photos capable of identifying facial features. The system has a tracking feature which tracks the movement of an individual from camera-to-camera, essentially creating a breadcrumb trail for the user to follow. Reports are created and stored both on and off site for door access, motion detection, alarm events, smoke/fire events, system access, and both the arming and disarming of the intrusion alarm system.

Intrusion Alarm System

The Applicant has contracted Better Days Technology to manage the purchase and installation of all intrusion alarm devices. Better Days Technology has extensive experience in the installation and management of intrusion alarm and video surveillance systems in regulated cannabis cultivation and retail facilities throughout New England.

Applicant will install a state-of-the-art security system to prevent and detect diversion, theft, or loss of sensitive product. The system includes a device for the detection of break-ins and a back-up alarm system with the ability to remain operational in power outage in accordance with regulations. The installation and the device itself will meet or exceed widely accepted industry standards and will include the following features:

- The device will be a sound, microwave, photoelectric, ultrasonic, or other generally accepted and suitable device.
- The device will be monitored in accordance with accepted industry standards, be maintained in operating order, have an auxiliary source of power, and be capable of sending an alarm signal to the monitoring entity when breached if the communication line is not operational.
- The device will fully protect the entire facility and will be capable of detecting break-ins of any method when activated.
- The device will include a duress alarm, a panic alarm, and an automatic voice dialer.
- Applicant will install glass break sensors near all perimeter windows.

{S7492231} 27

The Intrusion Alarm System will be supplemented by the following elements:

- A second independent alarm system that will monitor the Facility vault, Security/IT closet, and any area where records are stored. The second independent alarm system will be installed by a separate security contractor as to ensure integrity of the separate systems.
- A third-party monitoring service to monitor the intrusion alarm system 24 hours a day, 7
 days a week. In the event of a security breach or a piece of hardware disconnecting from
 the communication loop, monitoring service will notify the local police as well as the DoS.
- Hold-up buttons located throughout the facility, including a combination of hardwired
 and employee-held wireless buttons. When activated, hold-up buttons will silently notify
 the third-party monitoring group, who will immediately notify local law enforcement that
 the Facility is currently under duress and a Law Enforcement Officer will respond to the
 Facility accordingly.

Video Surveillance System

Sweetspot Stamford will have video cameras in all areas that may contain cannabis plants, seeds, parts of plants, extracts, or cannabis oil and at all points of entry and exit, which will be appropriate for the normal lighting conditions of the area under surveillance. Applicant will direct cameras at all approved safes, approved vaults, dispensing areas, or cannabis oil sales areas, and any other area where cannabis plants, seeds, extracts, or cannabis oil are being produced, harvested, manufactured, stored, or handled. At entry and exit points, Applicant will angle cameras so as to allow for the capture of clear and certain identification of any person entering or exiting the facility.

The video surveillance system will feature:

- A failure notification system that provides an audible, text, or visual notification of any failure in the surveillance system.
- The ability to immediately produce a clear color still photo that is a minimum of 9,600 dpi from any camera image, live or recorded.
- A tamper evident date and time stamp embedded on all recordings. The date and time will be synchronized and set correctly and will not significantly obscure the picture.
- The ability to remain operational during a power outage.
- All video recordings will allow for the exporting of still images in an industry standard image format.
- Exported video will have the ability to be archived in a tamper evident proprietary format that ensures authentication of the video and guarantees that no alteration of the recorded image has taken place. Exported video will also have the ability to be saved in an industry standard file format that can be played on a standard computer operating system.
- All video surveillance footage will be maintained onsite and within the cloud storage for 90 days.

- Video surveillance footage will include a date and time stamp on all images without significantly obscuring the images.
- All cameras will have infrared capabilities, ensuring images are usable in low light conditions.

The Applicant will also place lighting throughout the interior and exterior perimeter of the facility to ensure adequate lighting for high quality video footage, while not disturbing surrounding neighbors. All video surveillance cameras will be placed in a way that allows for the clear and certain identification of any persons or activities at or in the immediate vicinity of any Cannabis or Cannabis Product, all cameras will continuously record 24/7. All video surveillance footage will be exportable and transferable to standard computing equipment and have a resolution of 720p or greater.

Security/IT Closet

The video surveillance system head unit will be kept in the IT/Security Closet located in the restricted area of the facility, which maintains a second redundant independent alarm system. Access to the video surveillance system head unit is restricted to the DoS. The DoS and designated representative, if necessary, will be the only Applicant employees allowed remote access to the video surveillance system. The DoS will provide access to this area to appropriate law enforcement agencies, security system service employees, or authorized representatives of state or municipal government agencies as necessary. The Security/IT room will be locked, and the room will not be used for any other function.

Information Technology Security

Through the implementation of multiple firewalls, and state of the art encryption, Applicant is able to confidently safeguard all security recordings/data, Health Insurance Portability and Accountability Act ("HIPAA") protected customer information, payment information, and all electronically stored data. The Genetec security software will seamlessly integrate IT Security into the security program, protecting all information stored and processed on the Applicant network. Applicant will utilize a SonicWall Firewall to secure all incoming and outgoing data traffic. Additionally, all customer records will be stored on an independent operating system that can only be accessed from workstations within the Facility, this is known as the Applicant Intranet, essentially mitigating the risk of outside threats to confidential customer information.

{87492231}

Secure Storage

Sweetspot Stamford will have one large storage location in the proposed facility for regulated products. This room will be a vault featuring secure, sanitary storage in accordance with all regulations. Applicant will use a modular vault that meets the requirements for the storage of Schedule I drugs set by the DEA Diversion Control Division. This is where Applicant will store all sensitive and regulated products. The vault will not be positioned against any adjacent walls and will utilize a second independent alarm system. The vault alarm system will remain armed at all times, including during working hours. The vault shall only be opened during daily opening/closing operations and restocking of the dispensary facility.

Vault Specifications

Sweetspot Stamford will use the Vault Structures, Inc. Thor III vault door, a GSA Class 5 rated steel door. Applicant will use a Sergeant and Greenleaf 6700 Series 4 Wheel Safe Lock in combination with the Thor III vault door. The vault locking mechanism will be on a timer that will only allow access to the vault during schedule hours. Applicant will use a Vault Structures, Inc. STD DEA steel mesh day gate. The day gate will always remain closed when the vault is open and approved personnel are conducting operations inside the vault. Anytime the vault is unoccupied. the main vault door will remain closed, locked, and armed. The vault will be equipped with an intrusion alarm device that will be monitored 24 hours a day, 7 days a week by the Applicant's third-party monitoring group. The vault will have seismic sensors on the vault walls, floor and ceiling that will detect vibration in an event forced entry is attempted. The vault will also have a silent duress alarm on the interior, and an intrusion alarm keypad outside of the vault with the ability to activate a silent duress signal.

Vault & Storage Access

Sweetspot's Director of Security will provide a written list of approved individuals who may access the vault/storage area. A dedicated computer will be located within the vault allowing employees to conduct inventory control operations as outlined in the Applicant's Inventory Audit Standard Operating Procedures. Anyone who accesses the vault will be logged through the Genetech security system and recorded. All cannabis products must be secured in the vault until they are brought to a customer in the Operations Zone at the time of purchase.

{87492231} 30

Safes

Sweetspot Stamford will utilize safes within the vault to secure cash, cannabis products, and any other sensitive materials for which increased security measures are deemed appropriate. All safes will have a minimum of a "B Burglary Rate", be equipped with a relocking device, and have a weight of 750 pounds or more. Safes will be secured to the ground and equipped with a Sergeant and Greenleaf dial lock.

Transportation of Regulated Products

The transportation of cannabis product into and out of the facility is the most sensitive security related recurring function of any cannabis dispensary. Aside from the conclusion of a retail transaction, these are the only times at which regulated products in the custody of Sweetspot Stamford are to be found outside of the Limited Access Zone, Restricted Access Zone, or a secured display case. Cannabis and cannabis products are transported into the facility to be stocked as inventory and, when applicable, from the facility to be delivered to patients, caregivers, or customers after online purchase or to laboratories or research programs. While the security infrastructure in place to secure the facility at all times assist in these sensitive transactions, special care is given to ensure these processes are completed without incident.

Receiving Inventory

As a hybrid retailer, Sweetspot Stamford may obtain cannabis and cannabis products only from either a licensed transporter or a licensed cultivator, micro-cultivator, producer, product packager, or food and beverage manufacturer, provided said license holders are transporting only products they cultivated, produced, manufactured, or packed within the scope of their license at their facility and are transporting in the custody of an employee.

At all times practicable, Sweetspot Stamford will only receive regular inventory delivery from a licensed transporter or other license holder if said license holder meets the industry standards for secure transportation procedures and vehicle security standards set for dedicated transporters. Regular delivery of cannabis and cannabis products shall take place outside of dispensary operating hours, on an irregular schedule, and with no less than two Sweetspot Stamford employees on premises to observe, record, and track the movement of all regulated products and material.

Sweetspot Stamford may also receive cannabis or cannabis product from a delivery service only in the instance that the cannabis or cannabis product could not be delivered as intended. Sweetspot Stamford will maintain a secure location on premises where cannabis and cannabis product that is unable to be delivered shall be stored in accordance with regulations. Medical cannabis dispended to a qualified patient or caregiver that is unable to be delivered and is returned to the dispensary shall be returned to the licensee inventory system and removed from the prescription drug monitoring program within 48 hours of the cannabis being returned.

Security-Related Policies & Practices

Security Equipment Inspection, Testing and Maintenance

All security equipment will be maintained in good working order and will be tested in intervals not to exceed 30 days from the previous inspection/test and promptly implement all necessary repairs to ensure the proper operation of the security system. Testing includes intrusion alarm system, video surveillance system, network video recorder, security footage storage system, the security power generator and perimeter lighting. Tests will be executed on the first day of the month by the DoS and logged in the Intrusion Alarm Test & Inspection Log.

Local Law Enforcement Policy

Applicant understands the law enforcement has spent decades policing cannabis as an illegal controlled substance. It is Applicant policy to work in partnership with local law enforcement in order to become a resource of information. Applicant will host open house events where Law Enforcement Officers (LEO's) can walk through the facility in its entirety and sit down for a Q&A with the DoS and managers. The local law enforcement will be made legal agents of the property, and this will allow them to patrol the exterior property and address issues such as loitering and illegal activity without needed to establish consent from Applicant.

Inventory Management Procedures

Applicant will implement a redundant system of Inventory Control, by utilizing an electronic tracking system along with handwritten tracking completed daily. The proposed system to be used is METRC. METRC was developed specifically for the cannabis industry and provides tools for cannabis tracking and compliance with state regulations. METRC is an electronic radio-frequency identification (RFID) seed-to-sale tracking system that tracks the cannabis from seed or clone stage until the cannabis product is sold to the end customer or until the sensitive product is destroyed. METRC includes, at a minimum, a central inventory management system and standard and ad hoc reporting functions as required by the CCB and will be capable of otherwise satisfying required recordkeeping.

Daily Retail Floor Inventory Audits

After the close of business, the Manager or Assistant Manager will audit all the products in the retail sales area and packaging/prep room to be brought back into the vault for storage that evening. Audit procedures require a full independent inventory for each type of product, to be cross checked with a sales report for the day and a list of inventories initially brought into the retail space/operations space that morning.

Weekly Inventory Audits

Sweetspot Stamford has identified an inventory control system, electronic tracking system and has developed rigorous SOPs and checks and balance to implement the system. But inventory controls and systems must be reevaluated weekly by the Manager. In accordance with regulations, the Manager will lead the team in conducting weekly inventories of all cannabis plants and products, including the seeds, parts of plants, and cannabis oil in storage, that shall include, at a minimum:

- The date of the inventory
- A summary of the inventory findings.
- The name, signature, and title of the employee who conducted the weekly audit.
- The name of the manager signing off on each audit.

All weekly inventories will be crosschecked with inventory reports accessible through the point-of-sale system, which aggregates all sales made in the Flowhub point-of-sale tracking software, along with all inventories logged in inventory tracking.

Weekly Point of Sale Testing

Each week, the Manager will perform tests to ensure that the inventory management and point of sale system provides reports that detail:

- A "total inventory in storage" by location and batch report that records user, date, time, item, quantity, and storage access in chronological order.
- An "all events" report that provides detail on all user activities and transaction types within a time frame, and tailored to specific data requirements, such as individual items or users.
- A "controlled substances vault compare" report that allows administrators to crossreference the inventory that leaves the storage area and arrives at the shelf, dispensary facility, or any other location to the inventory said location is presumed to hold. Transactions that do not match will be flagged on this report by location, item, quantity, date, time, and user.

Secure Opening & Closing Procedures

Sweetspot Stamford Standard Operating Procedures include comprehensive plans for daily store opening & closing. Included in these SOPs are many elements focused on security-related matters during these crucial moments of operation. Security related elements of Opening & Closing Standard Operating Procedures include the following provisions:

Opening Protocol

A manager must be onsite for the facility to open. The opening manager will be responsible for inspecting the facility retail space to ensure no cannabis products were left on the floor. Manager will then conduct audits as outlined in the Daily Inventory Check Standard Operating Procedure. The facility will never be opened outside of scheduled business hours.

Applicant employees will arrive to the facility no earlier than 15 minutes of their respective shift start time. When arriving, employees should take care to observe the surroundings of the facility for any signs of suspicious or unlawful activity. In the event an employee notices anything that seems suspicious, employee shall contact the management team prior to entering the facility. Employees must have employer-issued identification card visible upon arrival.

{87492231} 33

Closing Protocol

The manager on-site during closing will store cannabis in an approved vault within the Facility and shall not sell cannabis products when the Facility is closed. During times that the Facility is closed, it will be securely locked and equipped with an alarm system. Such alarm will be activated and operated separately from any other alarm system at the Facility and will be able to immediately detect entrance to the Facility at times when it is closed. Keys and access codes to the alarm system shall be controlled in such a manner so as to prevent access to the Facility by other than authorized Facility employees.

The closing of the Facility should be done by an approved closing manager. No employee will exit the Facility alone during closing hours, employees will always exit in pairs and make the closing manager aware when employees are leaving the facility.

The following tasks should be carried out during closing:

- Ensure staff members are exiting the Facility in pairs.
- Observe perimeter cameras for suspicious and/or illegal activity.
- Check all doors inside the Facility to ensure they are in the appropriate status.
- Exterior doors secured and free of obstruction.
- Pedestrian trap doors are secured, and controls are properly functioning.
- Doors entering Limited and Restricted Access areas are secured are functioning.
- Perimeter lighting is functioning.
- Inventory all employee panic buttons.
- Arm the intrusion alarm system, ensuring no zone faults are present.
- Before driving off the property, the closing manager shall do a perimeter patrol of the property observing for:
 - o Loitering individuals, or individuals conducting surveillance of the Facility.
 - o Vehicles in unauthorized areas (e.g. fire lanes, non-handicap vehicles in
 - o handicap spaces, vehicles parked outside of designated spaces).
 - o Signs of vandalism to the Facility and/or neighboring tenants.

The Manager or Assistant Manager in charge at time of closing shall do the following:

- Conduct closing audits as outlined in the Inventory SOPs.
- Following audits, secure and arm the vault for the evening.
- Ensure staff complete daily closing tasks.
- Inspect the Facility retail space to ensure no cannabis product have been left out.
- Ensure all computer workstations and POS stations are logged off.

Workplace & Employee Security Policies

Criminal Background Check

Criminal background checks will be conducted for all owners and employees in accordance with regulations.

Drug and Alcohol-Free Workplace Policy

Applicant has established, will implement, and adhere to a written alcohol-free, drug-free, and smoke-free workplace policy that will be available to the CCB or designated agent upon request. While on Applicant premises and while conducting business-related activities off premises, no employee may use, possess, distribute, sell, or be under the influence of alcohol, cannabis, or illegal drugs.

Employee Property

Applicant employees will refrain from bringing backpacks, duffel bags, grocery/store bags, and large purses into the Facility. Each employee will be issued a personal locker and lock. Additionally:

- In accordance with regulations, all employees will be issued pocketless clothing for when working in an area containing cannabis plants, seeds, and extracts, including cannabis oil.
- Any bag that an employee brings into the facility must be secured in their personal locker immediately.
- At no time will an employee have a personal bag inside the vault, IT/Security Closet, retail space or inside a consultation/processing room.
- Employees are prohibited from using personal electronic devices while inside the Applicant Facility vault, while inside the IT/Security Closet, while in the public zone when customers are present and while escorting a visitor.
- Employees will refrain from using their personal device when entering and exiting the facility. It is important for employees to be aware of their surroundings, observing for security threats during arrival and departure from the facility.

Security and Diversion Training

Educating employees to mitigate the risk of the diversion and understand how to respond to a variety of safety and security related potentialities is a key prevention method. Security training is included in the module-based training.

Schedule C Statement of Findings

Pursuant to Public Act No. 21-1 titled "An Act Concerning Responsible and Equitable Regulation of Adult-Use Cannabis" (the "Act"), when a municipality does not specifically account for an adult-use cannabis operation, the municipality must analogize the proposed use with another similar use in existence in the City's regulations. Specifically, Section 148(c) of the Act states:

"Unless otherwise provided for by a municipality through its zoning regulations or ordinances, a cannabis establishment shall be zoned as if for any other similar use, other than a cannabis establishment, would be zoned[.]"

Based on this statutory language, the City of Stamford has analogized Hybrid Retailers with a Medical Marijuana Dispensary Facility which is subject to Special Permit approval. Sweetspot Stamford, LLC ("Sweetspot") and A&F High Ridge, LLC (collectively, the "Applicants") are proposing a Hybrid Retailer at 111-123 High Ridge Road (the "Property"). The specific Special Permit request is detailed in the enclosed Sweetspot Stamford Introduction and Project Overview (the "Project Overview").

A. Statement of Findings in Accordance with Section 19.C.2 of the Zoning Regulations

In accordance with Section 19.C.2 of the Zoning Regulations, the Applicants submit that the following standards and conditions have been satisfied:

Special Permits shall be granted by the reviewing board only upon a finding that the proposed use or structure or the proposed extension or alteration of an existing use or structure is in accord with the public convenience and welfare after taking into account, where appropriate:

- 1. The location and nature of the proposed site including its size and configuration, the proposed size, scale and arrangement of structures, drives and parking areas and the proximity of existing dwellings and other structures.
 - Sweetspot proposes to operate a 2,412+/- square foot Hybrid Retailer on the Property. The Property is located just north of "Bulls Head" in the C-N zone, one of the commercial zones identified as an appropriate location for cannabis retail use. With access to a main arterial road as well as a local side street, the Property is an ideal location for this use. Both buildings on the Property (111 & 123 High Ridge) have been used for office and retail purposes since approximately 1964. The proposed use would simply substitute a new retail operation for the prior ones. Aside from the tenant fit-out and technology/security upgrades, no changes are proposed to the existing structures, drives or parking areas. Thus, the Applicants submit that the proposed use is appropriate for the surrounding neighborhood and this project is in accord with the public convenience and welfare.
- 2. The nature and intensity of the proposed use in relation to its site and the surrounding area. Operations in connection with special permit uses shall not be injurious to the neighborhood, shall be in harmony with the general purpose and intent of these

Regulations, and shall not be more objectionable to nearby properties by reason of noise, fumes, vibration, artificial lighting or other potential disturbances to the health, safety or peaceful enjoyment of property than the public necessity demands.

The Property is in the C-N zone which permits a variety of commercial uses. It has been used for commercial purposes since it was originally constructed in 1964. Like most commercial uses along High Ridge Road, residential uses border the Property to the east. The Property was actually rezoned from R-7 ½ to C-L in 1963, likely to accommodate the commercial construction. The proposed use is a retail use which is consistent with the other uses on the Property as well as those to its immediate south and west. The proposed use poses no risk to nearby properties by reason of noise, fumes, vibration, artificial lighting or other potential disturbances to health, safety or peaceful enjoyment of property. In fact, as a highly regulated industry, the Hybrid Retailer offers significantly more assurances with regard to health, safety and peaceful enjoyment than many other uses permitted as-of-right on the Property. Details regarding strict operational policies and protocols are included in the Project Overview. Thus, the Applicants submit that the proposed use is appropriate for the neighborhood and will not be objectionable to nearby properties.

3. The resulting traffic patterns, the adequacy of existing streets to accommodate the traffic associated with the proposed use, the adequacy of proposed off-street parking and loading, and the extent to which proposed driveways may cause a safety hazard, or traffic nuisance.

Sweetspot has engaged SLR to conduct a comprehensive traffic and parking analysis. In connection with this study, SLR evaluated eight (8) nearby intersections to estimate site-generated traffic volumes and impact on future parking and traffic operations. With regard to traffic, no change to the Level of Service at these intersections is anticipated. This makes sense given the Property's location on High Ridge Road, a main arterial roadway connecting downtown to North Stamford and the Merritt Parkway, and the fact that the Property has been used for office and retail purposes since the time it was constructed. Notably, the proposed Hybrid Retailer is approximately 2-3 times smaller than the other recently approved Hybrid Retailers in Stamford. For all of these reasons, SLR found that the contemplated number of vehicle trips created by the proposed use can be accommodated by the surrounding roadway system.

The Property is currently legally nonconforming as to parking based on the parking ratio in existence at the time the buildings were constructed. A copy of a letter countersigned by James Lunney confirming the legal nonconforming status will follow under separate cover (the "Lunney Letter"). Notwithstanding this, however, SLR found that the two sites –111 & 123 High Ridge Road – will provide more than enough parking for all of the office and retail uses on the Property. The peak hours for this use tend to be between 6:00 pm and 7:00 pm on weekdays and 3:00 pm and 4:00 pm on weekends. Significantly, office uses typically clear out by 6:00 pm during the week and are closed on the weekends. This is particularly true for government offices like the workers' compensation office on the Property. There will typically be eight (8) employees working at a time, with the ability to increase the employee count to fourteen (14), and approximately four (4) to five (5) deliveries per week is anticipated. These deliveries will take place before opening hours

of the facility so as not to create competing parking demands. An entity related to the Sweetspot will be supplying the product to this facility. Should the Zoning Board believe it is desirable, Sweetspot is also willing to provide parking for employees offsite and shuttle them to the Property. Thus, the Applicants submit that the proposed parking is more than adequate.

4. The nature of the surrounding area and the extent to which the proposed use or feature might impair its present and future development.

The proposed use is in harmony with the historical and current use of the Property and surrounding areas. In addition, the proposed use is safe and secure, quiet, and has proven successful at the other recently approved locations as well as in other states. The Property is suitably distant from the other locations so as to provide a more convenient option for palliative and adult-use customers located in central and northern Stamford. The Hybrid Retailer will occupy otherwise vacant retail space and provide significant tax revenue (3% gross revenue) to the City of Stamford. It is a neighborhood commercial use in a neighborhood commercial zone. There is no reason to believe the use will impair present or future development.

5. The Master Plan of the City of Stamford and all statements of the purpose and intent of these regulations.

The Property is located in Master Plan Category 7 (Commercial Arterial). The purpose of this category is to provide for and protect business-oriented development (1) extending from the Downtown or (2) along major arterial routes. The proposed Hybrid Retailer is a brand new business in the State and the proposed location is on High Ridge Road, a major arterial roadway. Moreover, the proposed use also forwards the City's economic development initiatives. Sweetspot would be a new, diverse company in an existing commercial location operated by native Stamfordites invested in the City's future. It is an ideal use in an ideal location by a committed operator.

The Applicants propose to replace vacant office/retail space with a desirable retail use, with corresponding economic benefits to the neighborhood. This project will increase the tax base and add vitality to this area of Stamford. Accordingly, the proposed use is in accordance with the public convenience and welfare.

B. Statement of Findings in Accordance with the definition of Medical Marijuana Dispensary Facility

In accordance with the definition of a medical marijuana dispensary facility, the Applicants submit that the following standards and conditions have been satisfied:

a. Medical Marijuana Dispensaries must possess a current license from the State of Connecticut Department of Consumer Protection and comply with the Regulations of the State of Connecticut Department of Consumer Protection Concerning the Palliative Use of Marijuana, per the Connecticut General Statutes, Section 21a-408-1 to 21a-408-70,

inclusive, as may be amended from time to time. Failure to maintain proper licenses shall be deemed an immediate violation of the City of Stamford Zoning Regulations.

Like Dispensaries, use of the Property as a Hybrid Retailer is heavily regulated by the State and a license is required from the Connecticut Department of Consumer Protection ("DCP") to operate. CT Plant Based Compassionate Care LLC ("CT Plant") currently has a provisional cannabis cultivation license which, pursuant to Section 21a-420(o) of RERACA, entitles CT Plant to form an equity joint venture for the purpose of opening a Hybrid Retailer subject to approval by the City, CT Social Equity Council and final licensure from the DCP. As noted in the Project Overview, Sweetspot, is a joint venture between CT Plant and CT SE Holding Company LLC for purposes of opening a Hybrid Retailer. Sweetspot will acquire and maintain all required licenses from DCP to operate a Hybrid Retailer facility at the Property.

b. No Medical Marijuana Dispensaries shall be located within a 3,000 feet radius of any other Dispensary;

There are currently two other Hybrid Retailers in Stamford – Fine Fettle (12 Research Drive) and Curaleaf (814 East Main Street). Both of these businesses are located more than 3,000 feet radius of the Property.

- c. Signage for Dispensaries must comply with the following standards:
 - 1) Signage on the Dispensary facility Building shall be limited to a single Sign no larger than sixteen inches in height by eighteen inches in width;
 - 2) In addition to a Sign on the facility Building, a Dispensary may install one (1) additional Ground Sign or Pole Sign, where such signs are permitted, not exceeding lesser of (i) what is permitted in the underlying zoning district, or (ii) ten (10) square feet in area and ten (10) feet in height when ground mounted;
 - 3) Dispensaries may use the words "medical marijuana dispensary facility" on the facility's signage;
 - 4) There shall be no illumination of a Sign advertising a marijuana product at any time:
 - 5) There shall be no signage that advertises marijuana brand names or utilizes graphics related to marijuana or paraphernalia on the exterior of the Dispensary or the Building in which the Dispensary is located;
 - 6) There shall be no display of marijuana or paraphernalia within the Dispensary which is clearly visible from the exterior of the Dispensary; and
 - 7) There shall be no signage which advertises the price of its marijuana.

The Applicants are happy to accept a condition of approval requiring all signage to conform to this requirement with final design subject to approval by Zoning Board staff.

d. Parking shall be provided according to Section 12 of the Zoning Regulations, as follows: A Dispensary shall meet the parking standard for Retail Store.

The parking on the Property is legally nonconforming, as evidenced by the Lunney Letter, which will follow under separate cover. Based on the historic parking requirement of one

space per 500 SF, the proposed retail space consisting of 2,412± SF (including back of house areas) would require five (5) parking spaces. Collectively, the entire site generates a parking requirement of sixty-eight (68) parking spaces using this grandfathered ratio. As detailed in the Lunney Letter, there is sufficient parking to accommodate the existing and proposed uses.

C. Statement of Findings in Accordance with Section 12.K.4.e of the Zoning Regulations

Section 12.K.1 of the Zoning Regulations provides: "[s]idewalks shall be provided along all public and private roadways, subject to the exceptions and exemptions set forth in Subsection 12.K.3." One of these exceptions is for renovations or alterations exceeding \$250,000 in cost, as determined by the Building Department. The Building Department will not confirm this cost until a plan review for the building permit is conducted. However, Sweetspot estimates its renovation cost to be below this threshold. In the avoidance of doubt, the Applicants also request Special Permit approval pursuant to Section 12.K.4.e of the Zoning Regulations to be exempt from the sidewalk requirements contained in Section 12.K as same relate to Halpin Road. Notably, no sidewalks are required along High Ridge Road because it is a State Highway outside the jurisdiction of the City. Although the Applicants need only show that one of the following items entitles them to an exemption from these regulations, they submit that all three items are satisfied:

(1) existing conditions do not allow for the construction of a sidewalk;

Pursuant to Section 12.K, sidewalks are required along property boundaries adjacent to roadways. As noted above, this requirement does not apply to the Property's boundary along High Ridge Road. The northern boundary, along Oaklawn Avenue, was recently improved by the City with new sidewalks and the northeastern property boundary borders municipally owned property, not a road. Thus, the requirement would only apply to the southeastern boundary of the Property along Halpin Avenue. This boundary includes a narrow sliver of land planted with trees and bordered by on-street parking. Based on the survey, this land appears to be part of the right-of-way, outside the Property boundary. For all of these reasons, the Applicants submit existing conditions do not allow for the construction of a sidewalk.

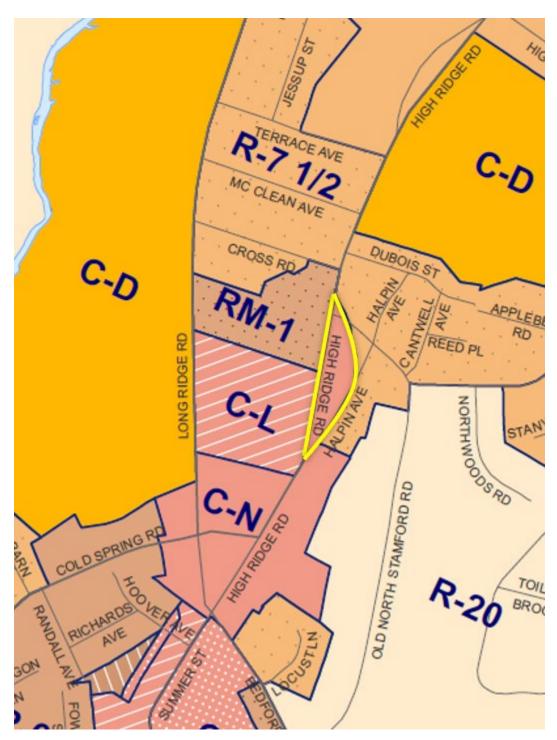
(2) the provision of a sidewalk would not serve the goal of providing a pedestrian network; or

The Property is surrounded by existing sidewalks to the west and north. A new sidewalk was also recently constructed on the eastern side of Halpin Avenue, parallel to the Property, which connects to Oaklawn Avenue to the north. Thus, there is an existing network of sidewalks that are appropriate for pedestrians. Adding a sidewalk to the Property along the western edge of Halpin Avenue would not contribute to this pedestrian network. Rather, it would confuse pedestrians and encourage an inferior option for safe travel.

(3) provision of a sidewalk would create less safe conditions for pedestrians.

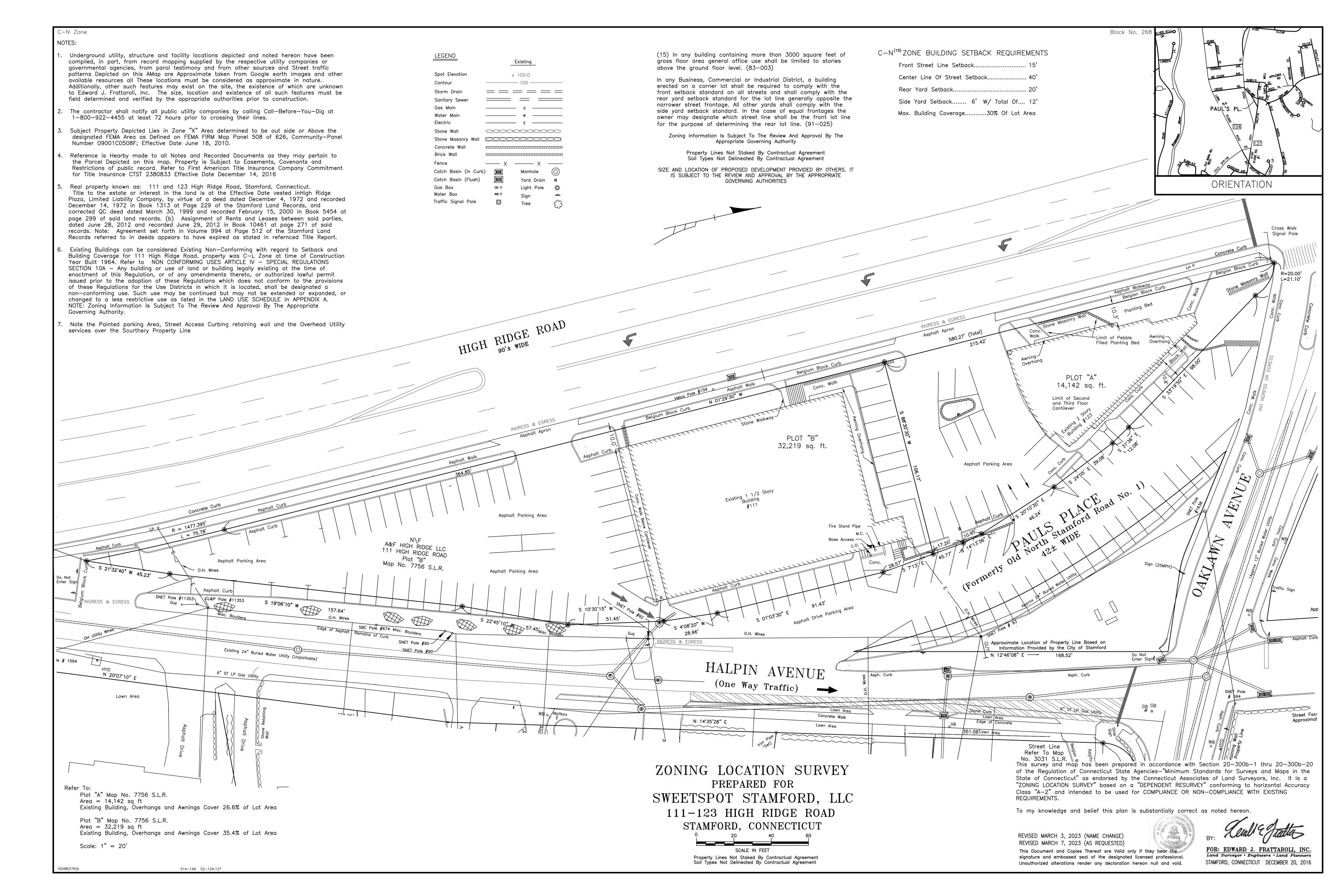
There is a large curb cut on the Halpin Avenue entrance to the Property. If the Applicants add a sidewalk along the southeastern edge of the Property fronting on Halpin Avenue, pedestrians would be encouraged to cross over this curb cut and adjacent parking lot when passing across the Property. As stated above, there already exists a new sidewalk parallel to the Property on the opposite side of Halpin Avenue. It would be far safer for pedestrians to use this existing sidewalk, which borders residential properties and connects to other sidewalks in the pedestrian network.

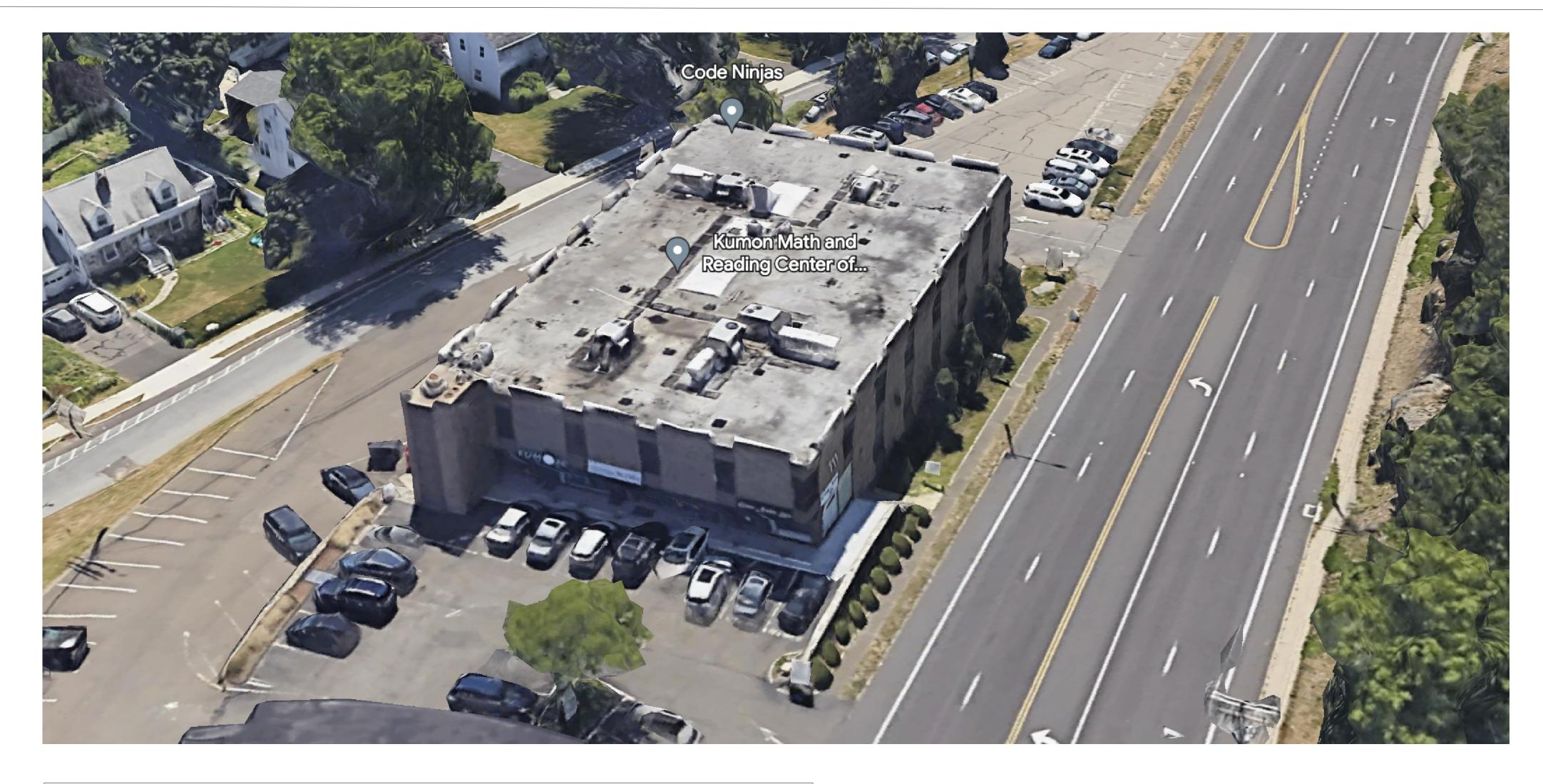
Schedule D Legal Description of Property


All those certain pieces, parcels or tracts of land, with the buildings and improvements thereon, situated in the City of Stamford in the county of Fairfield and state of Connecticut, being $1.07\pm$ acres in area and more particularly shown and designated as Plot "A" and Plot "B" on a certain map entitled "Map Showing Subdivision of Property of Salvatore Vavala, Sr. & Samuel J. Potenza Stamford, Conn.", which is on file in the office of the Town Clerk of the City of Stamford as Map No. 7756, reference thereto being had for a more particular description thereof.

Said parcel of property is bounded westerly a distance of 580.3'± by High Ridge Road and easterly a distance of 705.0'± by Halpin Avenue and Lands N/F known as Paul's Place aka Formerly Old North Stamford Road No. 1, presently utilized for parking. The parcel is located on Town Clerk block number 224. The intersecting streets nearest the parcel are Halpin Avenue and Oaklawn Avenue.

Schedule E Zoning Data Chart – C-N Zone


	Standard/Required	Existing/Approved	Proposed	Notes	
Min. Lot Area	5,000 SF	1.06± acres / 46,6361±	No changes	Complies	
		sf			
Min. Lot	50'	1,361.41' (total	No changes	Complies	
Frontage		frontage)			
FAR	0.3	0.93	No changes	Existing Nonconformity	
Building Height	2 stories / 25'	3 stories	No changes	Existing Nonconformity	
Building Area	30%	62%	No changes	Existing Nonconformity	
(Corner Lot)					
Min. Front	Street Line: 15'	10'	No changes	Existing Nonconformity	
Yard	Street Center: 40'				
Min. Side Yard	One Side: 6'	10.8'	No changes	Complies	
	Both Sides: 12'				
Min. Rear Yard	20'	N/A	No changes	N/A	
Parking	Retail: 4 spaces per	120 spaces	No changes	Existing Nonconformity	
	1,000 sf GFA				


Schedule F Existing Zoning Map

Schedule G Aerial Photograph of Property

	SWEETSPOT - DRAWING LEGEND
SHEET NAME	; , , ,
C	COVER SHEET
10 - 1	FLOOR PLAN
10 - 2	STORE FRONT
10-3	FLOOR PLAN: CLIENT QUEUING
10 - 4	FLOOR PLAN : EMPLOYEE PATHWAY

TOTAL SQUARE FOOTAGE: 2412

AWNING CONCEPT PER EXISTING CONDITIONS

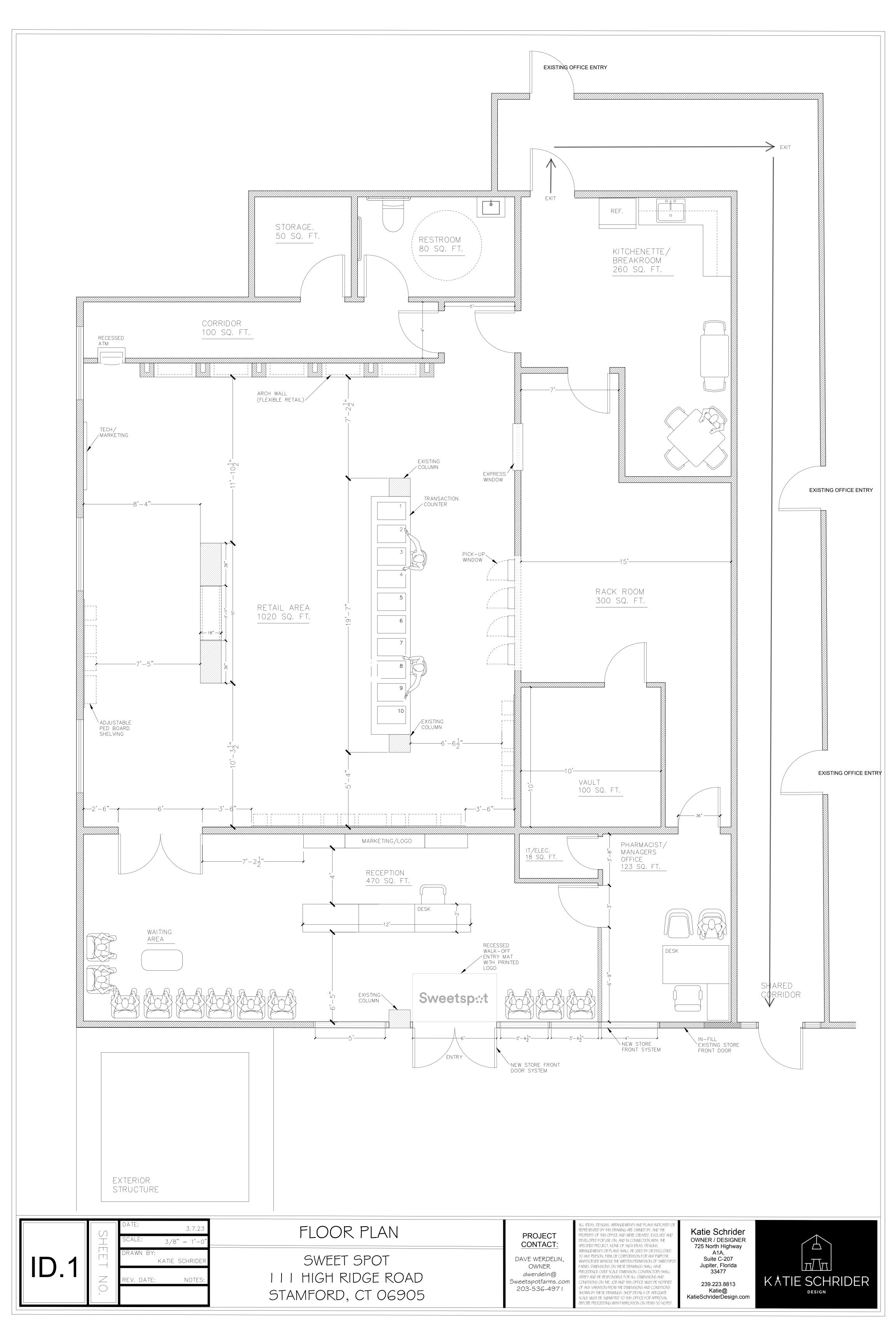
PROJECT LOCATION: I I HIGH RIDGE ROAD STAMFORD, CT 06905

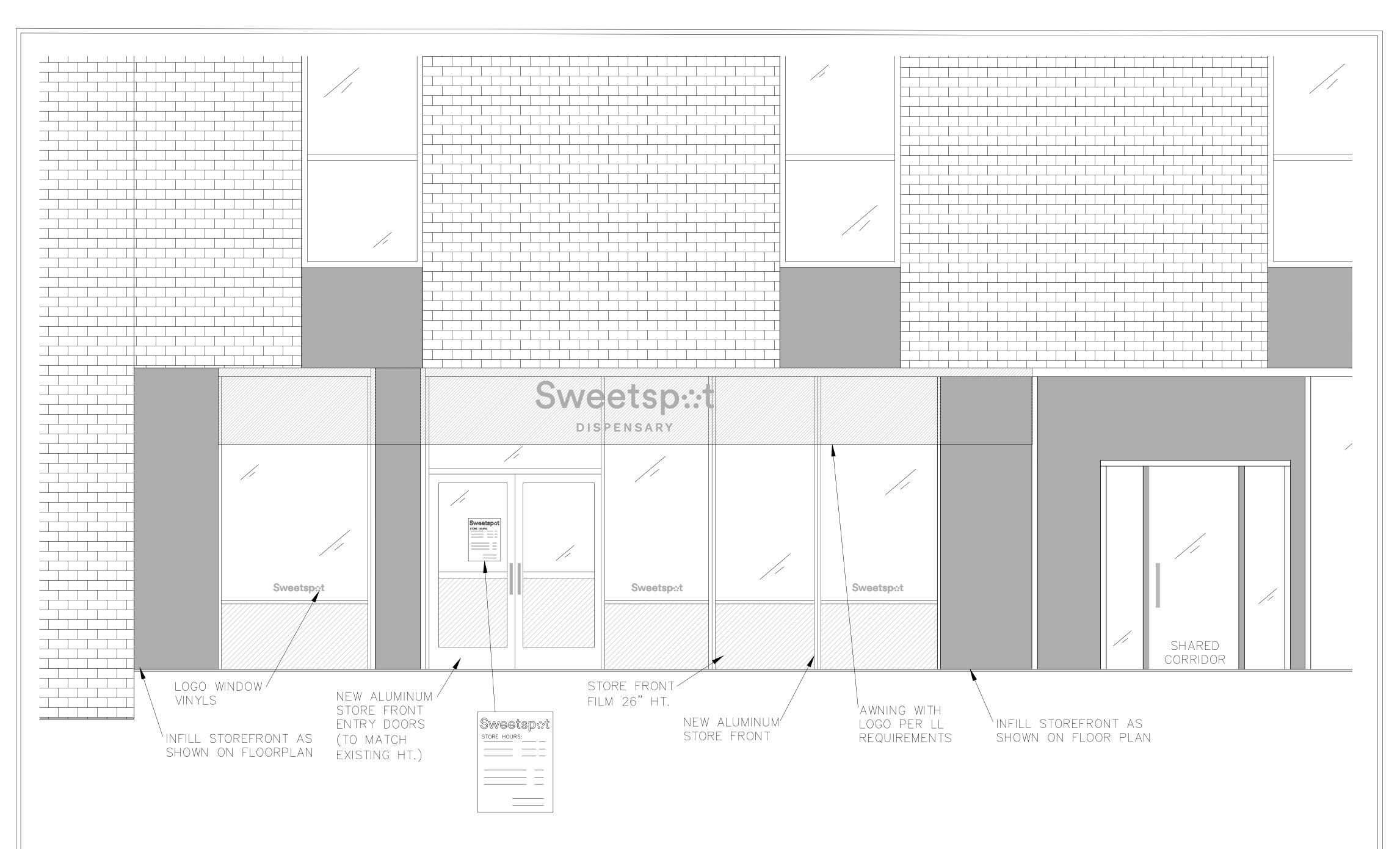
PROJECT CONTACTS: DAVID WEDERLIN, OWNER dwerdelin@sweetspotfarms.com 203.536.4971 https://sweetspotfarms.com

	SHEET NO	DATE: 3.7.23
		SCALE: NA
C		DRAWN BY: KATIE SCHRIDER
		REV. DATE: NOTES:
	•	

COVER PAGE

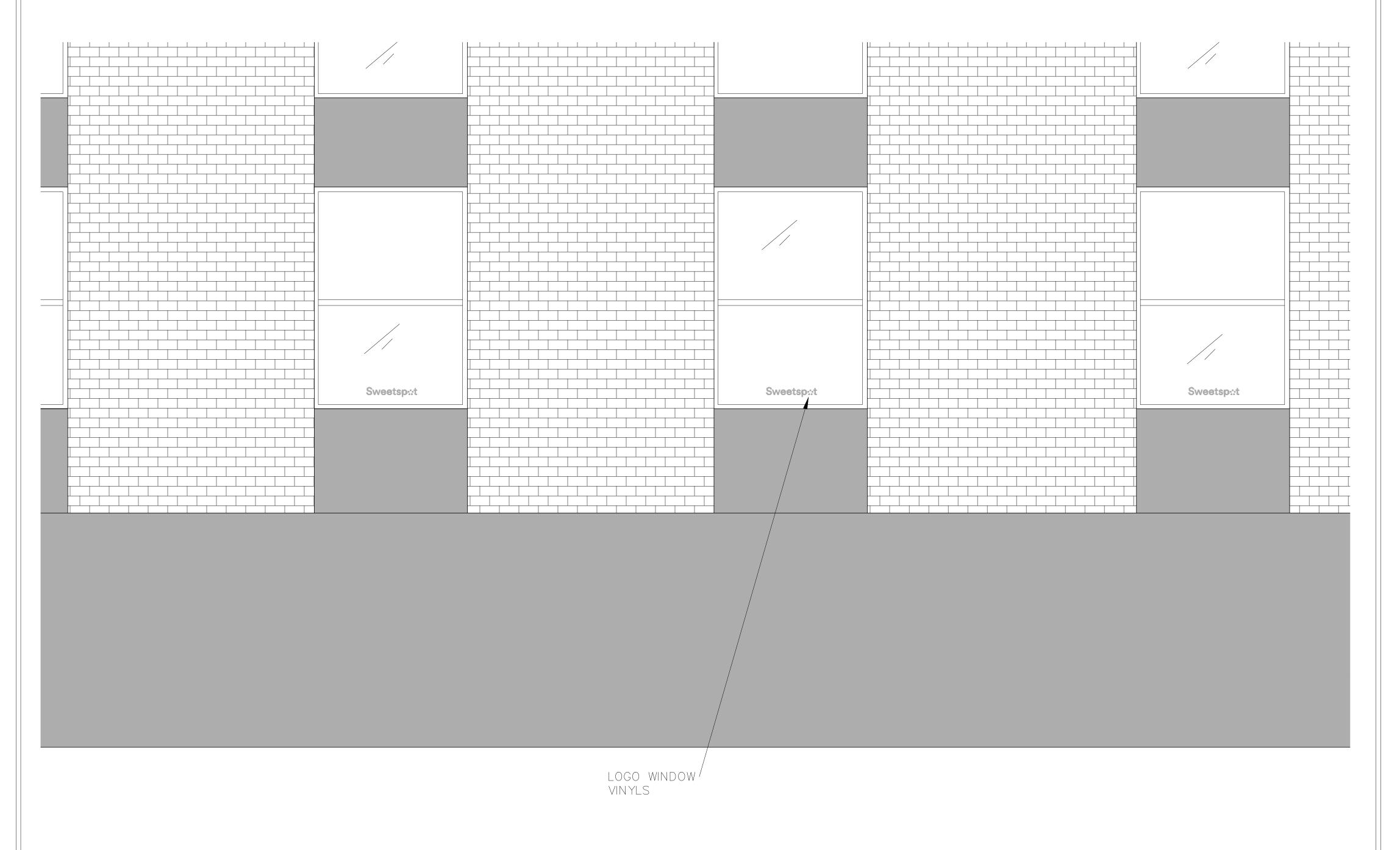
SWEET SPOT I I I HIGH RIDGE ROAD STAMFORD, CT 06905


PROJECT CONTACT:


DAVE WERDELIN, dwerdelin@ Sweetspotfarms.com 203-536-4971

239.223.8813 Katie@ KatieSchriderDesign.com

Katie Schrider
OWNER / DESIGNER
725 North Highway
A1A,
Suite C-207
Jupiter, Florida
33477



STORE FRONT - ENTRY DOORS

SCALE: 1/2" = 1'-0"

STORE FRONT - SIDE WINDOWS

SCALE: 1/2" = 1'-0"

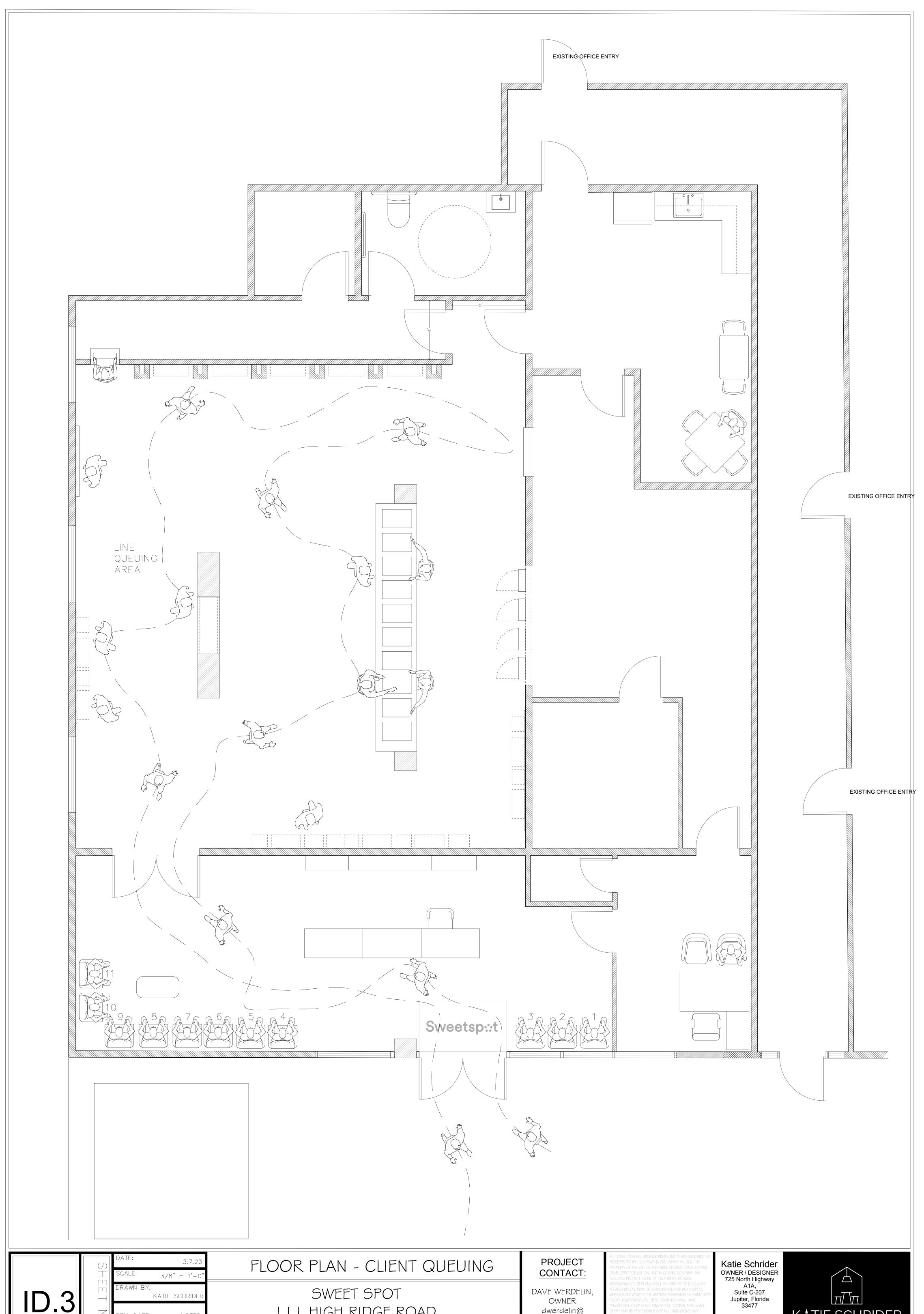
	DATE: 3.7.23	
	SCALE: $1/2" = 1'-0"$	
ID 2	DRAWN BY: KATIE SCHRIDER	
IU.Z	REV. DATE: NOTES:	

STORE FRONT - ENTRY / SIDE WINDOWS

SWEET SPOT

I I HIGH RIDGE ROAD

STAMFORD, CT 06905

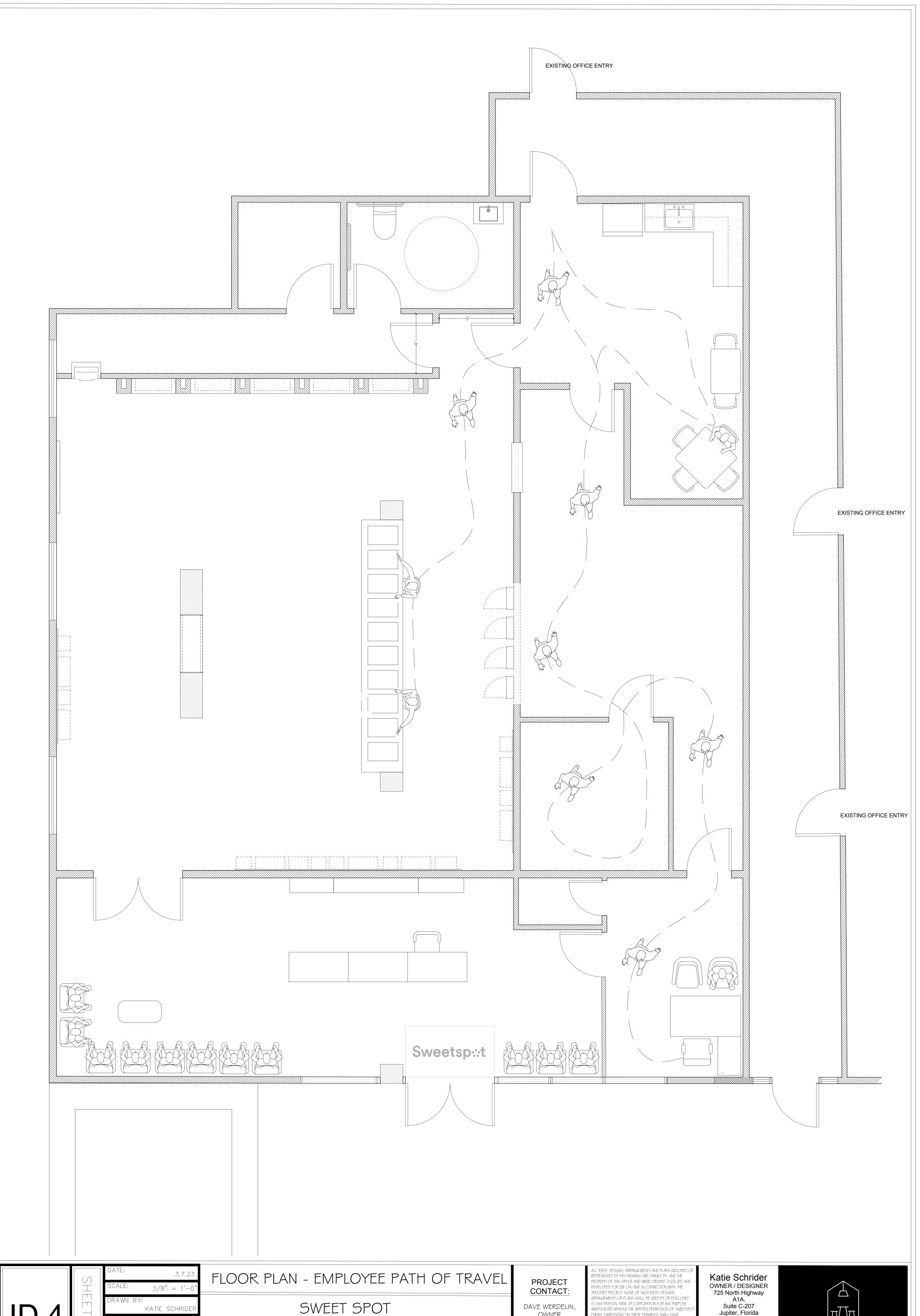

PROJECT CONTACT:

DAVE WERDELIN,
OWNER
dwerdelin@
Sweetspotfarms.com
203-536-4971

LL IDEAS, DESIGNS, ARRANGEMENTS AND PLANS INDICATED OR EPRESENTED BY THIS DRAWING ARE OWNED BY, AND THE ROPERTY OF THIS OFFICE AND WERE CREATED, EVOLVED AND EVELOPED FOR USE ON, AND IN CONNECTION WITH, THE PECIFIED PROJECT. NONE OF SUCH IDEAS, DESIGNS, RANGEMENTS OR PLANS SHALL BE USED BY OR DISCLOSED OF ANY PERSON, FIRM OR CORPORATION FOR ANY PURPOSE HATSOEVER WITHOUT THE WRITTEN PERMISSION OF SWEETSPOT ARMS, DIMENSIONS ON THESE DRAWINGS SHALL HAVE RECEDENCE OVER SCALE DIMENSION. CONTRACTORS SHALL ERIFY AND BE RESPONSIBLE FOR ALL DIMENSIONS AND ONDITIONS ON THE JOB AND THIS OFFICE MUST BE NOTIFIED F ANY VARIATION FROM THE DIMENSIONS AND CONDITIONS HAVE DIMENSIONS OF DEPAULIED FOR ALL DIMENSIONS ON THE DIMENSIONS AND CONDITIONS

Katie Schrider
OWNER / DESIGNER
725 North Highway
A1A,
Suite C-207
Jupiter, Florida
33477
239.223.8813
Katie@
KatieSchriderDesign.com

ID.3


REV. DATE:

I I I HIGH RIDGE ROAD STAMFORD, CT 06905

dwerdelin@ Sweetspotfarms.com 203-536-4971

239.223.8813 Katie@ KatieSchriderDesign.com

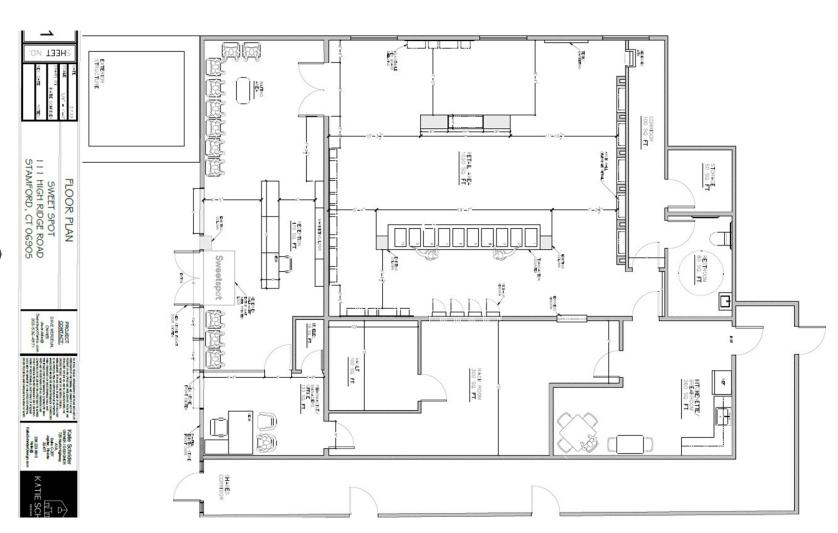
NOTES: REV. DATE:

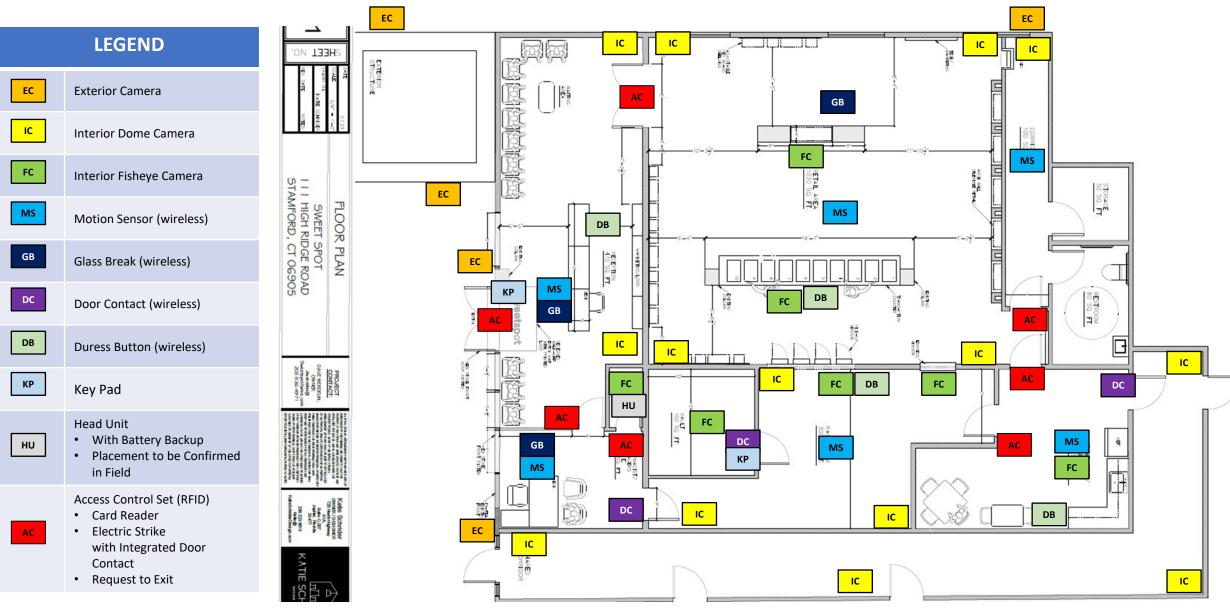

III HIGH RIDGE ROAD STAMFORD, CT 06905

OWNER dwerdelin@ Sweetspotfarms.com 203-536-4971

OF ANY VARIATION FROM THE DIMENSIONS AND CONDITIONS

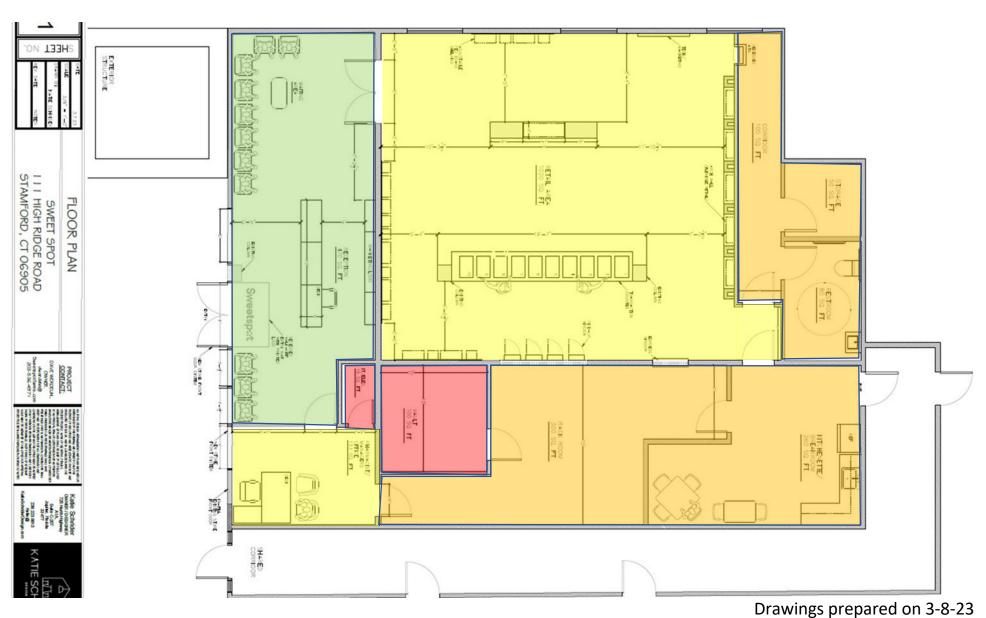
SHOWN BY THESE DRAWINGS. SHOP DETAILS OF ADEQUATE SCALE MUST BE SUBMITTED TO THIS OFFICE FOR APPROVAL BEFORE PROCEEDING WITH FABRICATION ON ITEMS SO NOTED.


Katie Schrider
OWNER / DESIGNER
725 North Highway
A1A,
Suite C-207
Jupiter, Florida
33477 239.223.8813 Katie@ KatieSchriderDesign.com


Proposed Architectural Layout

Sweetspot Stamford, LLC.

111 High Ridge Road. Stamford, CT



Security Overlay (Cameras, Access control, Security, etc.)

Operational Zones overlay (Public, Ops, Limited Access, Restricted Access)

111 HIGH RIDGE ROAD

TRAFFIC AND PARKING STUDY

Prepared for: Sweetspot Brands, LLC

Client Ref: 141.21378.00001

March 2023

March 3, 2023

Mr. Ben Herbst Sweetspot Brands, LLC 401 Commons Park South, Apt 871 Stamford, CT 06902

Re: **Traffic & Parking Study Retail Cannabis Facility** 111 High Ridge Road Stamford, Connecticut SLR #141.21378.00001

Dear Mr. Herbst,

At your request, SLR International Corporation (SLR) has undertaken this study to evaluate the traffic and parking-related implications associated with the proposed project to be located at 111 High Ridge Road in Stamford, Connecticut. Figure 1 displays the site location map. The site is occupied with an existing approximately 31,300-square foot (SF) mixed-use commercial building. Together with the adjoined 123 High Ridge Road parcel, there are 120 parking spaces to remain plus the existence of adjacent on-street parking on Halpin Avenue. The proposed project plans to occupy approximately 2,412 SF within the existing building with a retail cannabis store. Access to the site is provided by four existing driveways: two off High Ridge Road and two off Halpin Avenue.

The work comprising the study consisted of several tasks, including data collection, review of roadway and traffic conditions, estimation of site-generated traffic volumes, and assessment of future traffic operations. For this study, the following intersections were evaluated:

- High Ridge Road at Cross Road
- High Ridge Road at Oaklawn Avenue
- Oaklawn Avenue at Halpin Avenue
- High Ridge Road at Halpin Avenue
- High Ridge Road at Main Driveway
- Halpin Avenue at Main Driveway

Figure 2 displays the study area.

EXISTING CONDITIONS

The existing information involving the vehicle volumes, transit, and crash history was collected to determine the existing conditions of the area around the proposed project.

Site Environs

High Ridge Road is a principal arterial that runs north/south from Long Ridge Road to the New York state line. Adjacent to the site, the arterial has two lanes in each direction with a flush median and turn lanes at key intersections. On-street parallel parking is not permitted. Sidewalks are present on both sides of the roadway.

Oaklawn Avenue is a collector that runs east/west from High Ridge Road to Newfield Avenue. The collector has one lane in each direction. Sidewalks are present on both sides of the roadway.

Halpin Avenue is a local roadway that runs north/south from High Ridge Road to Dubois Street. Between Oaklawn Avenue and High Ridge Road, Halpin Avenue is one-way northbound with one travel lane, onstreet parallel parking permitted on the west side, and sidewalks present on the east side. North of Oaklawn Avenue, Halpin Avenue is two-way with one lane in each direction, on street parallel parking permitted, and no sidewalks.

Existing Transit Routes

CTtransit is Connecticut Department of Transportation's (CTDOT) bus service. CTtransit Stamford operates 15 local bus routes. Buses connect with other services in Norwalk, with the New Haven Line in several locations, the Harlem Line on Metro-North Railroad, and with Bee-Line buses in Westchester County, New York. CTtransit Stamford also operates the I-Bus, an express service between downtown Stamford and White Plains, New York. CTtransit Stamford bus route 331 has a stop in front of the project site.

Route 331 (High Ridge Road) operates between the Stamford Transportation Center and the Stamford Museum and Nature Center. All buses operate via Bedford Street and Summer Street to High Ridge Road. The route operates from approximately 5:20 a.m. to midnight (12:00 a.m.) on weekdays, and 6:30 a.m. to 10:00 p.m. on weekends.

Crash Data Summary

Information on traffic crash statistics for the study intersections was obtained from the Connecticut Crash Data Repository for the almost 4-year period of January 1, 2019, to December 7, 2022. The crash data collected for this period is shown in **Table 1**, summarized by location.

Table 1 Crash Data Summary

	Crash Severity				Type of Collision						
Location	Property Damage Only	Possible Injury	Suspected Minor Injury	Total	Rear End	Sideswipe (Same Direction)	Angle	Hit Motorcycle	Sideswipe (Opposite Direction)	Total	
Intersections											
High Ridge Road at Cross Road	5	-	-	5	2	1	1	-	1	5	
High Ridge Road at Oaklawn Avenue	9	1	-	10	6	2	2	-	-	10	
Oaklawn Avenue at Halpin Avenue	5	1	-	6	4	1	1	-	-	6	
High Ridge Road at Halpin Avenue	2	2	-	4	3	-	-	1	-	4	
High Ridge Road at Main Driveway	1	-	-	1	1	-	-	-	-	1	
Halpin Avenue at Main Driveway		-	-	1	-	1	-	-	-	1	
Intersection Totals	23	4	0	27	16	5	4	1	1	27	
Road Segments											
High Ridge Road: Oaklawn Avenue – Main Driveway	2	i	-	2	ı	2	-	ı	ı	2	
High Ridge Road: Main Driveway – Halpin Avenue	3	1	1	5	2	1	2	0	-	5	
Oaklawn Avenue: High Ridge Road – Halpin Avenue	1	-	1	2	1	1	-	-	-	2	
Halpin Avenue: Main Driveway – High Ridge Road	1	1	-	1	1	1	-	ı	ı	1	
Roadway Totals	7	1	2	10	4	4	2	0	-	10	
TOTAL		5	2	32	18	8	5	1	-	32	

Source: Connecticut Crash Data Repository from January 1, 2019, to December 7, 2022

A total of 27 crashes were reported at the study intersections for the almost 4-year period. More than 85 percent of these total crashes resulted in property damage only. No fatalities were reported. The most common collision type was rear-end collisions, which are fairly common at intersections, comprising approximately 59 percent of the reported intersection-related crashes. The most crashes occurred at the intersection of High Ridge Road and Oaklawn Avenue.

A total of 10 non-intersection-related crashes were reported along the project site frontage on High Ridge Road, Oaklawn Avenue, and Halpin Avenue for the almost 4-year period. Approximately 70 percent of these non-intersection-related crashes resulted in property damage only. Again, no fatalities were reported. The most common collision types were rear-end and sideswipe (same direction) collisions, comprising approximately 80 percent of reported non-intersection-related crashes. Two crashes were also reported within the project site. One was a rear-end collision and one was a hit fixed object collision.

Existing Traffic Volumes

Traffic monitoring data from August 2020, (collected during the COVID-19 epoch) and December 2017, for High Ridge Road north of Halpin Avenue was obtained from CTDOT. The annualized average daily traffic (AADT) at this location in 2020 was recorded as 19,000 vehicles (8,500 northbound and 10,500 southbound) and 24,800 vehicles in 2017. Traffic monitoring data for Oaklawn Avenue southeast of Route 137 was also obtained from CTDOT. The AADT at this location in 2020 was recorded as 4,900 vehicles, and 6,100 vehicles in 2017.

To supplement the state traffic monitoring data, multimodal traffic counts, including vehicle turning movement, bicycle, and pedestrian crossing counts, were conducted at the study intersections. The counts were conducted on Tuesday, December 13, 2022, Thursday, December 15, 2022, and Wednesday, February 8, 2023, from 4:00 p.m. to 6:00 p.m. to capture peak afternoon commuter activity; and Saturday, December 10, 2022, Saturday, December 17, 2022, and Saturday, February 11, 2023, from 11:00 a.m. to 1:00 p.m. to capture peak retail activity. For analysis, the highest single peak-hour volume for each time period was extracted from the count data. The study area peak hours were found to be from 5:00 p.m. to 6:00 p.m. (Weekday P.M. Peak Hour) and from 12:00 p.m. to 1:00 p.m. (Saturday Midday Peak Hour). The existing peak-hour traffic volumes are shown in Figure 3. The existing peak-hour pedestrian volumes are shown in **Figure 4**. The counts are included in the Appendix.

PROPOSED PROJECT

As stated previously, the proposed project plans to occupy approximately 2,412 SF of the existing 31,300-SF mixed-use commercial building with a retail cannabis facility to replace two current tenants: one currently occupied by a Kumon learning center and the other occupied by Aliasher Scrubs. Access to the site is provided by four existing driveways: two off High Ridge Road and two off Halpin Avenue.

<u>Proposed Project Trip Generation</u>

The proposed new site-generated peak-hour trips were estimated using statistical data published by the Institute of Transportation Engineers (ITE). Table 2 summarizes the site-generated traffic estimates for the proposed project during the study peak hours.

¹ Trip Generation, 11th Edition, Institute of Transportation Engineers, 2021

Table 2 Proposed Project Traffic Estimates

Land Use	Units	Week	day P.M	. Peak F	lour	Sat	urday P	eak Hou	ır
Lanu USE	Ullits	Trip Rate	In	Out	Total	Trip Rate	In	Out	Total
		Prop	osed Pro	oject					
882 – Marijuana Dispensary	2.4 KSF	18.92/KSF	23	23	46	28.85/KSF	35	35	70

Notes:

- 1. Trip Generation, 11th Edition, Institute of Transportation Engineers
- KSF = Thousand Square Feet Gross Floor Area

As shown in Table 2, the proposed project is estimated to generate 46 vehicle trips (23 vehicles entering and 23 vehicles exiting) during the weekday afternoon peak hour and 70 vehicle trips (35 vehicles entering and 35 vehicles exiting) during the Saturday midday peak hour.

It is important to note that the two units comprising the proposed project were occupied at the time the existing traffic volumes were conducted. To provide a conservative analysis for the purpose of this traffic and parking study, the trips generated by these units were not subtracted from the proposed project sitegenerated trips. But in reality, the net increase in traffic by the proposed retail cannabis store replacing the two existing stores will be less than the numbers listed in Table 2. It is also important to note that no internal capture credit was applied for the mixed-use site. In reality, some patrons going to the retail cannabis store will not be new to the mixed-use site, but rather will already be on site because of other existing businesses on site.

<u>Proposed Project Trip Distribution</u>

The geographic distribution of the proposed project site-generated traffic was estimated based on review of the roadway traffic patterns at the project site driveways. Figure 5 illustrates the distribution for the proposed project site-generated traffic through the study area.

Based on the proposed project trip generation and trip distribution, the resulting proposed project sitegenerated trips were assigned to the study area intersections. Figure 6 displays the resulting proposed project trip assignment.

FUTURE (2023) CONDITIONS

The proposed project is anticipated to be completed by the end of 2023. Future (2023) Conditions were evaluated both with and without the proposed project to determine possible traffic impacts.

Background Traffic Volumes

The background traffic scenario is reflective of Future (2023) Conditions if the proposed project was not built. Background (2023) Conditions includes traffic associated with other nearby expected upcoming developments that will be completed by 2023 as well as general traffic growth.

Based on correspondence with the City of Stamford and CTDOT, the following development projects were included in Background (2023) Conditions:

- 1. 255 High Ridge Road Goddard School
- 2. 3 Cold Spring Road Restaurant Development

Figure 7 displays the locations of the nearby expected developments. The anticipated future sitegenerated peak-hour trips from the 255 High Ridge Road development was obtained from the Traffic Access and Impact Study completed for the 201 High Ridge Road development in December 2018. Traffic study for the 3 Cold Springs Road development could not be obtained because the restaurants are as of right. Therefore, the new traffic anticipated to be generated by the development was estimated. Peakhour trips for the development were estimated using statistical data published by ITE, and geographic distribution of the new traffic was estimated based on review of the roadway traffic patterns. The resulting total trip assignment from the nearby planned developments is shown in Figure 8. Information on the nearby planned developments is included in the Appendix.

Based on correspondence with CTDOT, the existing traffic volumes were projected to Future (2023) Conditions using a growth rate of 0.75 percent per year. Background (2023) Conditions peak-hour traffic volumes were estimated by applying the growth rate to the existing peak-hour traffic volumes (shown in Figure 3) and then adding the anticipated peak-hour total trip assignment from the nearby planned developments (shown in Figure 8). The resultant Background (2023) Conditions peak-hour traffic volumes are shown in **Figure 9**.

Combined Traffic Volumes

The combined traffic scenario is reflective of Future (2023) Conditions once the proposed project is completed. Combined (2023) Conditions peak-hour traffic volumes were estimated by adding the proposed project trip assignment (shown in Figure 6) to the Background (2023) Conditions traffic volumes (shown in Figure 9). The resultant Combined (2023) Conditions peak-hour traffic volumes are shown in Figure 10.

INTERSECTION CAPACITY ANALYSIS

Intersection capacity analysis was performed at the study intersections under Background and Combined (2023) Conditions to evaluate each intersection's ability to process traffic volumes. These evaluations were used to determine possible traffic impacts from the proposed project based on the comparison of background and combined traffic operations.

Intersection operation results are expressed as a level of service (LOS). LOS is used to provide a qualitative evaluation of the efficiency of operations of an intersection in terms of delay and inconvenience based on certain quantitative calculations. A description of the various LOS designations, A through F, is given in the Appendix. LOS A describes operations with very low average control delay per vehicle while LOS F describes operations with long average delays. The study intersections were evaluated using Synchro 11 (Trafficware) traffic analysis software package. Table 3 summarizes the capacity analysis findings under Background and Combined (2023) Conditions. The Synchro analysis worksheets are included in the Appendix.

It is important to note that LOS A to LOS D are generally considered acceptable conditions. However, in some areas, LOS E during peak hours is often deemed acceptable and can indicate an efficient tradeoff between traffic flow and the amount of land devoted to the movement of motor vehicles.

As shown in Table 3, all individual movements at the study intersections are expected to operate at acceptable LOS (LOS D or better) during both peak hours under Background and Combined (2023) Conditions. Additionally, with the proposed project, all individual movements at the study intersections are not expected to degrade in LOS, compared to Background (2023) Conditions.

QUEUE ANALYSIS

The study intersection queues were also evaluated using Synchro 11 (Trafficware) traffic analysis software package. For analysis, 95th percentile queues are recorded. The Synchro analysis worksheets are included in the Appendix. All approach lanes are expected to provide adequate storage length under Background and Combined (2023) Conditions during both peak periods.

Table 3 Capacity Analysis Summary Future (2023) Conditions

		Level of	Service	
Intersection/Lane Group	Weekday P.M	. Peak Hour	Saturday Midda	ay Peak Hour
	Background	Combined	Background	Combined
	Sign	alized		
	High Ridge Roa	d at Cross Road		
Eastbound Left/Right	В	В	В	В
Northbound Left/Through	С	С	В	В
Southbound Through/Right	В	В	В	В
Overall	В	В	В	В
	High Ridge Road a	t Oaklawn Avenue		
Westbound Left/Right	D	D	D	D
Northbound Through/Right	С	С	С	С
Southbound Left	С	С	В	В
Southbound Through	А	Α	А	А
Overall	С	С	С	С
	Unsig	nalized		
	Oaklawn Avenue	at Halpin Avenue		
Northbound Left/Through/Right	С	С	В	В
Southbound Left/Right	С	С	С	С
	High Ridge Road	at Main Driveway		
Westbound Left/Right	D	D	С	С
Southbound Left	В	В	В	В
	Halpin Avenue a	t Main Driveway		
Northbound Left	А	Α	А	А
Eastbound Left	В	В	В	В

Notes: LOS calculations were performed using Synchro 11.

PARKING ANALYSIS

The parking on site was also evaluated to assess any parking implications associated with the proposed project.

Estimated Peak Parking Demand

A comparison was conducted to review the estimated peak parking demands that are expected to be generated by the proposed project using the Stamford Zoning Regulations and the Institute of Transportation Engineers' (ITE) Parking Generation Manual 5^{th} Edition.

{S7491295}

As stated previously, the proposed project plans to occupy approximately 2,412 SF of an existing mixeduse commercial building with a retail cannabis facility. Based on the City of Stamford Zoning Regulations, parking for a Marijuana Dispensary Facility shall meet the parking standards for a Retail Store. Per Section 12 of the Zoning Regulations, four parking spaces shall be provided for each 1,000 SF of gross floor area of any Retail Store. Based on this, a minimum of 10 parking spaces are required for the proposed project per zoning ordinance.

Based on ITE's Parking Generation Manual 5th Edition, marijuana facilities have an average weekday peak period parking demand rate of 7.19 per 1,000 SF of gross floor area. Based on this, the proposed project is estimated to generate a weekday peak period parking demand of 17 parked vehicles.

Available Parking Supply

The 111 High Ridge Road parcel shares parking with the 123 High Ridge Road parcel. Together, the parcels have a total of 120 parking spaces on site². Additionally, Halpin Avenue has 12 on-street parking spaces adjacent to the proposed project site that are available to the public.

To understand the existing parking usage at the 111 and 123 High Ridge Road sites, parking observations were conducted on Thursday, December 15, 2022, and Saturday, December 17, 2022, on site and along Halpin Avenue. The counts were conducted at the start and end of the weekday afternoon and Saturday midday traffic counts. The observations are summarized in Table 4. It is again important to note that the two units comprising the proposed project were occupied at the time the parking observations were conducted.

As shown in the table, the two sites are expected to provide more than enough parking for the proposed project during both peak periods based on the estimated peak parking demands on site.

Table 4 Existing On-Site Parking Counts

Tim		On-Site Par	king Spaces	Halpin Ave Pa	rking Spaces
1111	le	Occupied	Available	Occupied	Available
Wooldon Afternoon	Before 4:00 p.m.	45	<i>7</i> 5	12	0
Weekday Afternoon	After 6:30 p.m.	55	65	11	1
Caturday	Before 11:00 p.m.	36	84	9	3
Saturday	After 1:00 p.m.	42	78	8	4

² This is the number of spaces counted manually. It includes the spaces on the former Paul's Place parcel and is an increase to the number shown on the survey. Please refer to the letter from Lisa Feinberg to James Lunney included with the application materials for additional details on the parking.

However, should the Zoning Board feel it is necessary, the Applicant is prepared to accommodate offsite parking for all employees associated with the proposed project, further reducing the estimated parking demand of the proposed project.

ITE Shared Parking Analysis

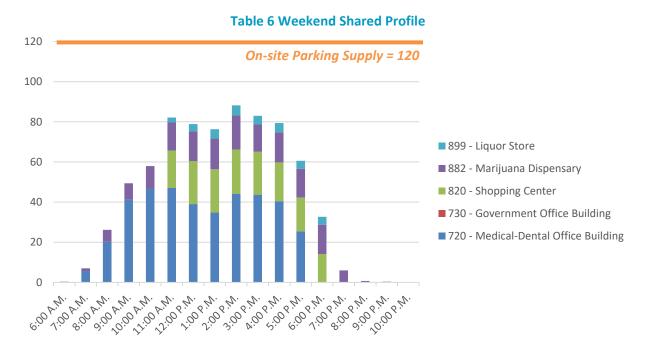

Using industry standard data to understand how the separate land use parking demands on the two sites may fluctuate throughout the course of a 24-hour period in the future with the proposed project, a conservative time-of-day shared parking analysis was conducted for the 111 and 123 High Ridge Road sites with the proposed project assumed. Peak parking demand percentages and rates from ITE's *Parking Generation Manual 5th Edition* were used for all of the sites' land uses to provide additional support for the parking supply and the hourly parking variations. It is important to note that ITE rates tend to be conservative and result in high parking estimates.

Table 5 summarizes the resulting weekday hourly parking demand fluctuations for the two sites. **Table 6** summarizes the resulting Saturday hourly parking demand fluctuations. As shown in the tables, based on industry standard data, it is again found that there will be more than enough parking with the proposed project.

Table 5 Weekday Shared Profile

SUMMARY

This study was conducted to assess the traffic and parking impacts of the proposed project to be located at 111 High Ridge Road in Stamford. The proposed project plans to occupy approximately 2,412 SF of the existing 31,300-SF mixed-use commercial building with a retail cannabis facility. The 111 High Ridge Road parcel shares parking with the 123 High Ridge Road parcel. Together, the parcels have a total of 120 parking spaces on site.

To determine a profile of existing conditions, data assembly efforts were undertaken. Estimates of traffic that will be generated by the proposed project were developed based on statistical data published by ITE, and intersection capacity analysis and queue analysis was performed at the study intersections under Background and Combined (2023) Conditions. Based on the results of the capacity and queue analysis, it is our opinion that the increase in traffic because of the proposed project can be accommodated by the surrounding roadway system. As such, no traffic mitigation is necessary. With the proposed project, all individual movements at the study intersections are not expected to degrade in LOS, compared to Background (2023) Conditions.

To determine the parking operations of the proposed project site, parking counts of the site were made, and parking demands were estimated based on City of Stamford Zoning Regulations and statistical data published by ITE and a conservative future shared parking analysis was performed. **Based on the observations conducted on site and the results of the ITE shared parking analysis, it is our opinion that**

the two sites (111 and 123 High Ridge Road) will provide more than enough parking for all the uses within the two mixed-use commercial buildings with the proposed project.

We hope this report is useful to you and the City of Stamford. If you have any questions or need anything further, please do not hesitate to contact either of the undersigned.

Sincerely,

SLR International Corporation

David G. Sullivan, PE

U.S. Manager of Traffic & Transportation Planning

Emily A. Foster, PE

Senior Transportation Engineer

Figures

- Figure 1 Site Location Map
- Figure 2 Study Area
- Figure 3 Existing (2022) Conditions Peak-Hour Traffic Volumes
- Figure 4 Existing (2022) Conditions Peak-Hour Pedestrian Volumes
- Figure 5 Proposed Project Distribution
- Figure 6 Proposed Project Peak-Hour Trip Assignment
- Figure 7 Nearby Planned Developments Locations
- Figure 8 Nearby Planned Developments Total Peak-Hour Trip Assignment
- Figure 9 Background (2023) Conditions Peak-Hour Traffic Volumes
- Figure 10 Combined (2023) Conditions Peak-Hour Traffic Volumes

Appendix

- **Traffic Counts**
- Information on the Nearby Planned Developments Include in Background (2023) Conditions
- LOS Designation Descriptions
- Synchro Analysis Worksheets

21378.00001.f2723.ltr.docx

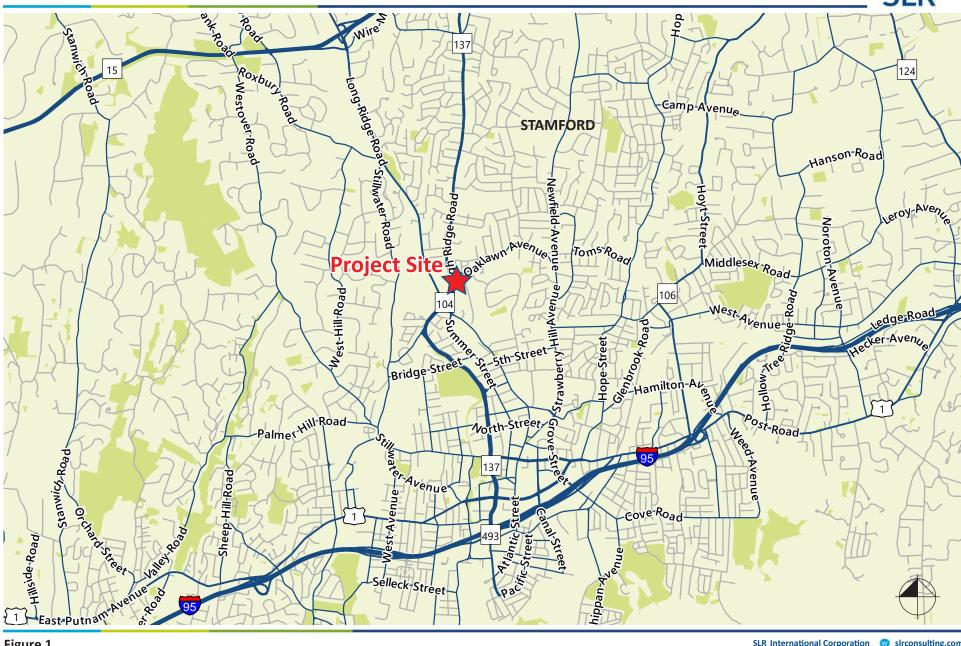
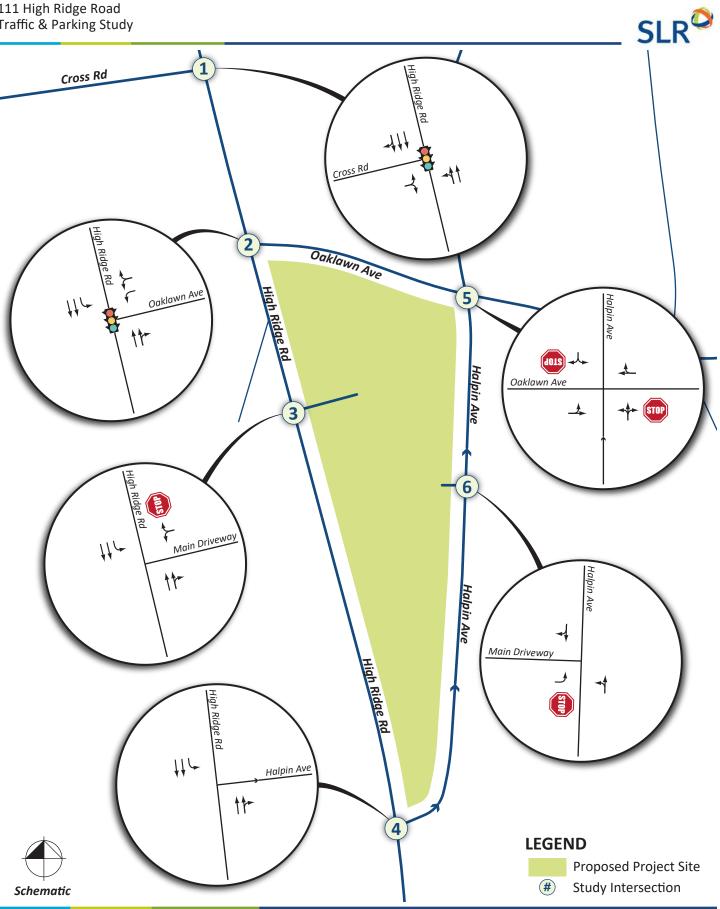



Figure 1 Site Location Map

Figure 2 Study Area



Figure 3 Existing (2022) Conditions Peak Hour Traffic Volumes

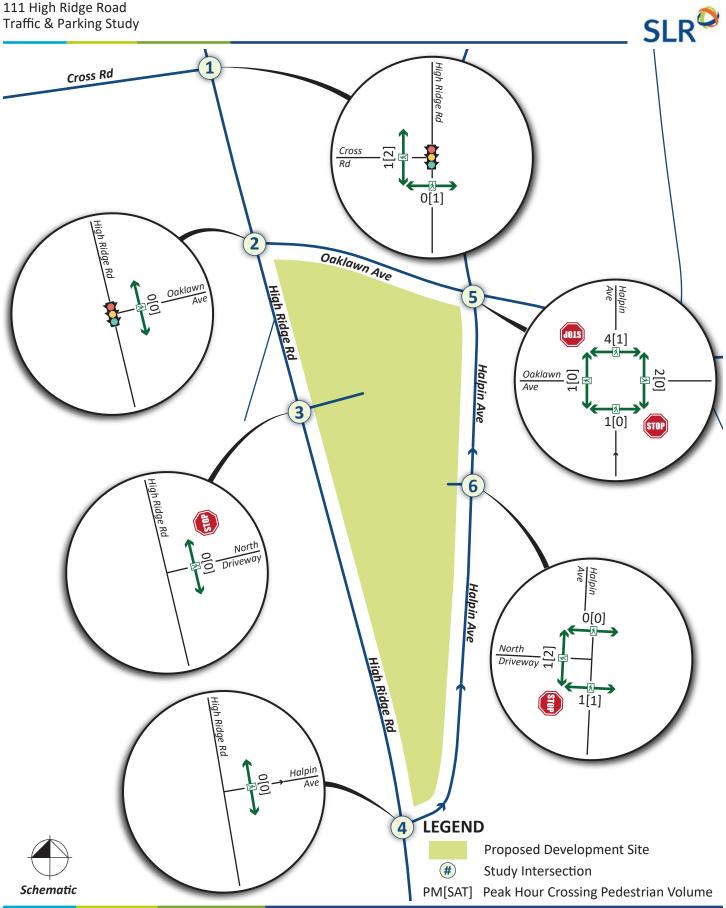


Figure 4 Existing (2022) Conditions Peak-Hour Pedestrian Volumes

Figure 5 Proposed Project Distribution

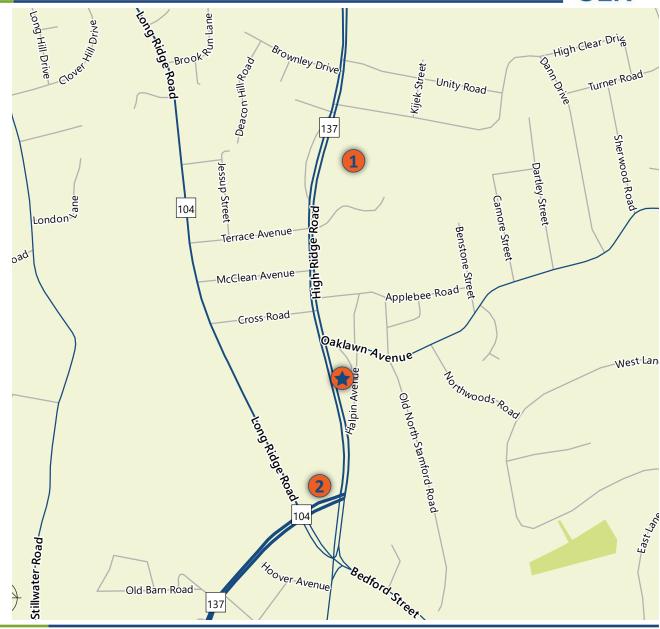


Figure 6 Proposed Project Peak Hour Trip Assignment

Nearby Planned Developments

- 1. 255 High Ridge Road **Goddard School**
- 2. 3 Cold Spring Road **Restaurant Development**

LEGEND

Proposed Project Location

Planned Development Location

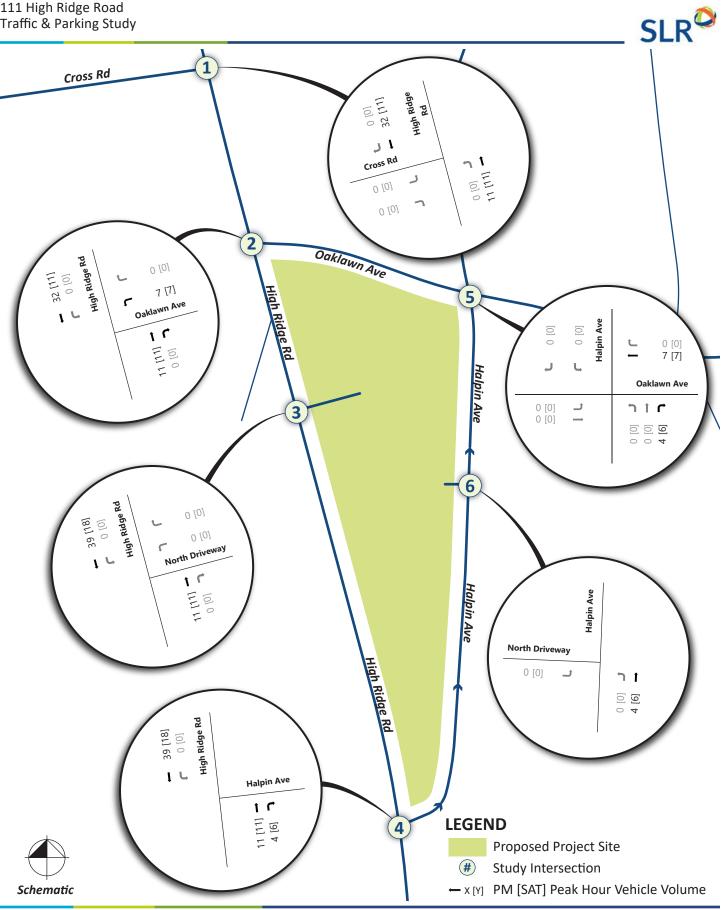


Figure 8 Nearby Planned Developments Total Peak-Hour Trip Assignment

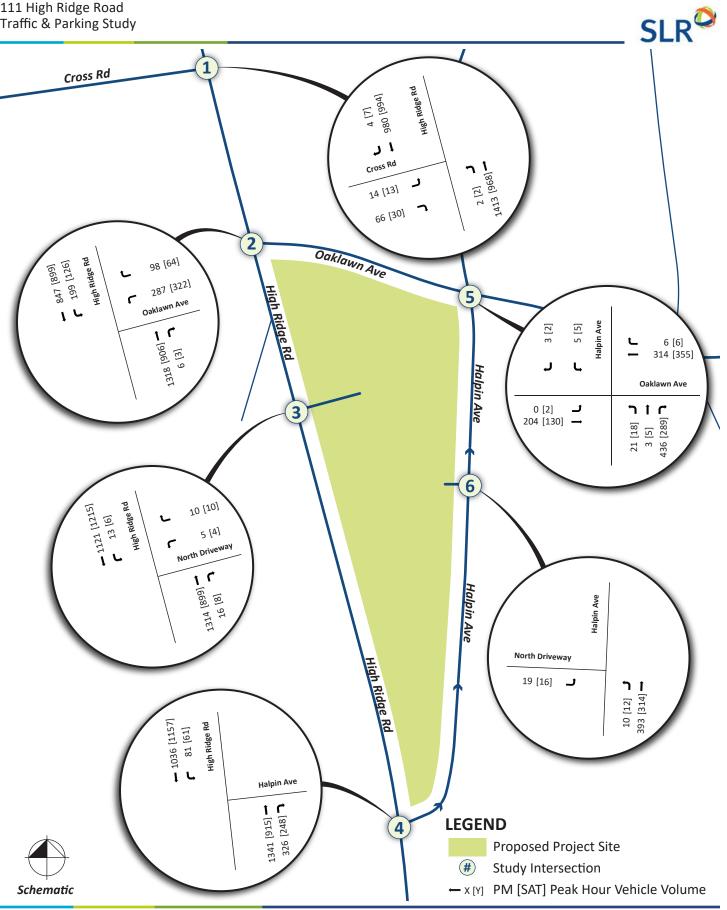


Figure 9 Background (2025) Conditions Peak Hour Traffic Volume

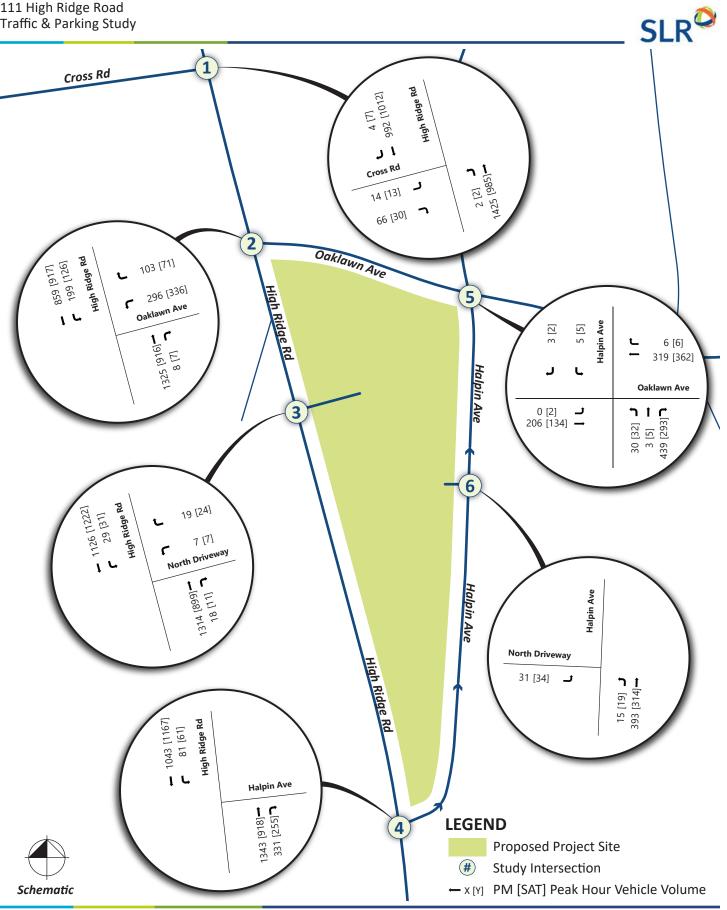


Figure 10 Combined (2025) Conditions Peak Hour Traffic Volumes

APPENDIX

P.M.TRAFFIC COUNTS (4:00 to 6:00 p.m.) Tuesday December 13th, 2022 Locations 1 and 2 Stamford, CT

High Ridge Rd. at Oaklawn Ave. P.M.TRAFFIC COUNTS (4:00 p.m. to 6:00 p.m.) Stamford, CT prepared by Reliable Traffic Counts, LLC Weather Clear

TRAFFIC COUNTS PEAK HOUR 5:00 TO 6:00 P.M.

File Name : 14191TURR Site Code : 00000001 Start Date : 12/13/2022 Page No : 1

		Int. Total	588	602	693	661	2544	652	650	691	693	2686	5230			5216	99.7	2	0	12	
		App. Total	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	
	QV.	Peds	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	EASTBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Ä	Thru	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		Right	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	
		App. Total	254	259	324	320	1157	306	319	339	339	1303	2460		47	2455	99.8	0	0	S.	
SE RD	DUND	Peds	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
HIGH RIDGE RD	NORTHBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ĦĠ	S S	Thru	252	259	323	319	1153	303	319	338	337	1297	2450	9.66	46.8	2445	8.66	0	0	2	
L		Right	2	0	_	_	4	6	0	_	N	9	10	0.4	0.2	9	100	0	0	0	
		App. Total	84	88	109	91	372	96	81	114	82	376	748		14.3	748	100	0	0	0	
OAKLAWN AVE	QNO	Peds	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
(LAWI	WESTBOUND	Left	65	89	79	63	275	80	56		63	278	553	73.9	10.6	553	100	0	0	0	
OAk	×	Thru	0	0	0	0	0	0			0	-	←	0.1	0	-	100	0	0	0	
		Right			30	_	97			35		97	194	25.9	-	-	100	0	0	0	
L.		App. Total	250	255	260	250	1015	250	250	238	269	1007	2022		38.7	2013	9.66	2	0.1	7	
HIGH RIDGE RD	DNNC	Peds	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
H RIDC	SOUTHBOUND	Left		22		44	194	48	48		49	198	392	19.4	7.5	392	100	0	0	0	
밀	SO	Thru	195	198	222		821	202	202	185	220	809	1630	80.6	31.2	1621	99.4	2	0.1	7	
		Right	0	_	_	0	0	_	_	_	0	0	-	0	0	0	0	0	0	0	
		Start Time	04:00 PM	04:15 PM	04:30 PM	04:45 PM	Total	05:00 PM	05:15 PM	05:30 PM	05:45 PM	Total	Grand Total	Approch %	Total %	CARS	% CARS	TRUCKS	% TRUCKS	BUSES	

High Ridge Rd. at Oaklawn Ave. P.M.TRAFFIC COUNTS (4:00 p.m. to 6:00 p.m.) Stamford, CT prepared by Reliable Traffic Counts, LLC Weather Clear

TRAFFIC COUNTS PEAK HOUR 5:00 TO 6:00 P.M.

File Name : 14191TURR Site Code : 00000001 Start Date : 12/13/2022 Page No : 2

High Ridge Rd. at Oaklawn Ave. P.M.TRAFFIC COUNTS (4:00 p.m. to 6:00 p.m.) Stamford, CT prepared by Reliable Traffic Counts, LLC Weather Clear

TRAFFIC COUNTS PEAK HOUR 5:00 TO 6:00 P.M.

File Name : 14191TURR Site Code : 00000001 Start Date : 12/13/2022 Page No : 3

		SOU	HIGH RIDGE RD SOUTHBOUND	E RD.			OAKL	DAKLAWN AVE WESTBOUND	A A			HGH NG H	HIGH RIDGE RD NORTHBOUND	E.B.			Ä	EASTBOUND	QN		
Start Time	Right	Thru	Left Peds		Ago. Total	Right	Thru	Left	Peds	App. Total	Right	Thr	Left	Peds	App. Total	Right	Thru	Left	Peds	Aco. Total	Int. Total
.An	alysi	s Fron	n 05:00	DPM to	Peak Hour Analysis From 05:00 PM to 05:45 PM - Peak 1 of	- Md	Peak	1 of 1													
r for	Ē	re Inte	rsectic	nn Beg	Peak Hour for Entire Intersection Begins at 05:00 PM	15:00 F	Mc														
05:00 PM	0	202	48	0	250	16	0	80	0	96	e	303	0	0	306	0	0	0	0	0	652
05:15 PM	0	202	48	0	250	24	-	99	0	81	0	319	0	0	319	0	0	0	0	0	650
05:30 PM	0	185	23	0	238	35	0	29	0	114	-	338	0	0	339	0	0	0	0	0	691
05:45 PM	0	220	49	0	269	22	0	63	0	82	7	337	0	0	339	0	0	0	0	0	693
Total Volume	0	809	198	0	1007	97	-	278	0	376	9	1297	0	0	1303	0	0	0	0	0	2686
% App. Total	0	80.3	19.7	0		25.8	0.3	73.9	0		0.5	99.5	0	0		0	0	0	0		
PHF.	000	919	.934	000	.936	.693	.250	869	000	.825	.500	959	000	000	.961	000	000	000	000	000	696
CARS	0	807	198	0	1005	26	-	278	0	376	9	1295	0	0	1301	0	0	0	0	0	2682
% CARS	0	8.66	100	0	99.8	100	100	100	0	100	100	8.66	0	0	8.66	0	0	0	0	0	99.9
TRUCKS	0	-	0	0	~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~
% TRUCKS	0	0.1	0	0	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BUSES	0	-	0	0	-	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	e
% BUSES	С	0.7	С	C	0	С	C	C	C	C	С	0	С	С	0	С	C	C	C	C	0.1

12/13/2022 04:00 PM 12/13/2022 05:45 PM CARS TRUCKS BUSES

	OAKLAWN AVE. Out In Total 204 378 580 0 0 0 0 0 204 378 580 0 0 0 0 0 71 1 278 0 Right Thru Left Pees	
Out High Rillock RD. Out 1392 1392 1392 1392 1007 1287 1987 1989 1989 1989 1989 1989 1989 19	Peak Hour Data North North CARS TRUCKS BUSES	1005 1301 2306 1000 1000 1000 1000 1000 1000 1000 1

High Ridge Rd. at Oaklawn Ave. P.M.TRAFFIC COUNTS (4:00 p.m. to 6:00 p.m.) Stamford, CT prepared by Reliable Traffic Counts, LLC Weather Clear

TRAFFIC COUNTS 5:00 TO 6:00 P.M. PEAK HOUR

File Name : 14191TURR Site Code : 00000001 Start Date : 12/13/2022 Page No : 4

High Ridge Rd. at Oaklawn Ave. P.M.TRAFFIC COUNTS (4:00 p.m. to 6:00 p.m.) Stamford, CT prepared by Reliable Traffic Counts, LLC Weather Clear

TRAFFIC COUNTS PEAK HOUR 5:00 TO 6:00 P.M.

File Name : 14191TURR Site Code : 00000001 Start Date : 12/13/2022 Page No : 5

							,	2000	2											
ĔΧ	きひ	HIGH RIDGE RD SOUTHBOUND	SE RD			OAKI	DAKLAWN AVE WESTBOUND	AVE.			HGH NOR	HIGH RIDGE RD NORTHBOUND	E RD.			EA	EASTBOUND	Ð		
Right	Thru	Left	Peds	App Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	Age, Total	Right	Thru	Left	Peds	App. Total	Int. Total
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-	0	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	1	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	~	0	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
0	-	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
0	100	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
0	100	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Total Int. Total Office Office

App. Teles 252 259 323 320 1154

20 20 30 28 28

| HIGH RIDGE RD | Start Time | Right Time | Left | Peak | Act of the Color of the C

EASTBOUND

652 648 690 692 2682

306 317 339 339 1301

303 317 338 337 1295

0 0 7 0 0 96 81 114 85 376

16 24 35 97

250 250 237 268 1005

48 48 49 49 198

0 202 0 202 0 184 0 219 0 807

05:00 PM 05:15 PM 05:30 PM 05:45 PM Total

9. 0

000

2455

2445 99.6 46.9 748 10 2 0.4 9 14.3 0.2 4

392 19.5 7.5

Grand Total Apprich % Total %

47.1

High Ridge Rd. at Oaklawn Ave. P.M.TRAFFIC COUNTS (4:00 p.m. to 6:00 p.m.) Stamford, CT prepared by Reliable Traffic Counts, LLC Weather Clear

TRAFFIC COUNTS PEAK HOUR 5:00 TO 6:00 P.M.

File Name : 14191TURR Site Code : 00000001 Start Date : 12/13/2022 Page No : 6

	Int. Total	7	7	4	-	თ	0	7	τ-	0	က	12	
	App. Total Int	0	0	0	0	0	0	0	0	0	0	0	_
QN	-	0	0	0	0	0	0	0	0	0	0	0	c
EASTBOUND	Left Peds	0	0	0	0	0	0	0	0	0	0	0	C
EA	Thru	0	0	0	0	0	0	0	0	0	0	0	C
	Right	0	0	0	0	0	0	0	0	0	0	0	_
	App. Total	2	0	_	0	က	0	2	0	0	2	3	
E RD	Peds	0	0	0	0	0	0	0	0	0	0	0	c
HIGH RIDGE RD NORTHBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	c
할일	The	2	0	_	0	က	0	7	0	0	2	2	100
	Right		0	0	0	0	0	0	0	0	0	0	0
	Arp. Total	0	0	0	0	0	0	0	0	0	0	0	
AVE.	Left Peds	0	0	0	0	0	0	0	0	0	0	0	c
OAKLAWN AVE WESTBOUND		0	0	0	0	0	0	0	0	0	0	0	c
OAK	Thru	0	0	0	0	0	0	0	0	0	0	0	C
	Right	0	0	0	0	0	0	0	0	0	0	0	<
	App Total	0	2	e	-	9	0	0	~	0	_	7	
SE RD	Peds	0	0	0	0	0	0	0	0	0	0	0	c
HIGH RIDGE RD SOUTHBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	C
Sel	Thru	0	2	3	-	9	0	0	_	0	_	7	100
	Right	-	0	0	0	0	0	_	0	0	0	-	<
	Start Time	04:00 PM	04:15 PM	04:30 PM	04:45 PM	Total	05:00 PM	05:15 PM	05:30 PM	05:45 PM	Total	Grand Total	America 0/

Oaklawn Ave. at Halpin Ave.
P.M.TRAFFIC COUNTS (4:00 p.m. to 6:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

TRAFFIC COUNTS PEAK HOUR 5:00 TO 6:00 P.M.

File Name : 1419-2TU Site Code : 00000002 Start Date : 12/13/2022 Page No : 1

WINDERFEROUND Page	NUMESTROUND Column Colum	HALPIN AVE.	Ψi			OAK	OAKLAWN AVE.	AVE			Ħ	HALPIN AVE	Ķ			OAK	DAKLAWN AVE	AVE.		
High	Name Mark Peris Assistant Mark Peris Assistant Mark Ma	SOUTHBOUND				WES	3TBO	QNO			NOR	THBC	QNO			EAS	TBO	DNC		
2 84 0 96 83 0 5 0 86 0 38 0 38 0 0 38 0 0 38 0	2 87 0 96 83 0 5 0 88 0 38 0 0 58 5 84 0 0 88 14 0 5 0 109 0 38 0 0 58 12 33 0 1 36 14 0 5 0 109 0 38 0 0 38 12 33 0 1 36 4 18 0 47 0 18 19 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 0 18 0 0 18 0 18 0 0 18 0 18 0 0 18 0 0 0 18 0 0 0 18 0 0 0 0 0 0 0 0 <th>Left Peds</th> <th></th> <th>Aup. Total</th> <th>Right</th> <th>Thru</th> <th>Left</th> <th>Peds</th> <th>App. Total</th> <th>Right</th> <th>Thru</th> <th>Left</th> <th>Peds</th> <th>App. Total</th> <th>Right</th> <th>Thru</th> <th>Left</th> <th>Peds</th> <th>App Total</th> <th>Int. Total</th>	Left Peds		Aup. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App Total	Int. Total
2 84 0 0 86 91 2 6 96 0 56 0 0 56 2 88 0 1 86 187 2 3 0 47 0 0 347 12 388 0 1 361 365 4 1 0 47 0 0 347 1 388 0 1 36 1 1 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 </td <td>2 84 0 0 86 91 2 6 96 0 56 0 0 36 2 86 0 0 1 86 87 2 3 0 47 0 0 347 12 386 0 1 86 87 2 3 0 47 0 0 347 2 6 0 1 86 17 2 0 47 0 0 182 2 6 0 0 81 19 1 8 1 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0</td> <td>0</td> <td></td> <td>4</td> <td>n</td> <td>87</td> <td>0</td> <td>0</td> <td>6</td> <td>83</td> <td>0</td> <td>S</td> <td>0</td> <td>88</td> <td>0</td> <td>38</td> <td>0</td> <td>0</td> <td>38</td> <td>220</td>	2 84 0 0 86 91 2 6 96 0 56 0 0 36 2 86 0 0 1 86 87 2 3 0 47 0 0 347 12 386 0 1 86 87 2 3 0 47 0 0 347 2 6 0 1 86 17 2 0 47 0 0 182 2 6 0 0 81 19 1 8 1 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0 182 0	0		4	n	87	0	0	6	83	0	S	0	88	0	38	0	0	38	220
2 8 10 0 89 104 0 5 0 10 0 39 0 0 39 12 338 0 1 351 365 4 18 0 387 0 182 0 0 47 3 77 0 1 811 90 1 6 1 107 0 47 0 182 0 87 0 6 8119 0 2 1 48 0 387 0 182 0 1 48 1 76 0 6 8119 0 2 1 48 0 387 0 182 0 1 48 0 387 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 <td>2 8 104 0 5 0 109 0 39 0 0 39 12 38 0 1 361 366 87 2 3 0 47 0 47 0 47 2 6 0 0 68 19 1 6 1 1 47 0 1 47 2 6 0 0 68 19 1 6 1 1 0 47 0 1 82 2 6 0 0 68 1 9 1 6 1 1 0 47 0 1 82 1 7 0 1 77 11 5 0 118 0 0 5 0 1 82 1 7 0 1 77 12 1 4 1 84 0 6</td> <td>0</td> <td></td> <td>7</td> <td>2</td> <td>8</td> <td>0</td> <td>0</td> <td>86</td> <td>91</td> <td>7</td> <td>c)</td> <td>0</td> <td>86</td> <td>0</td> <td>28</td> <td>0</td> <td>0</td> <td>28</td> <td>244</td>	2 8 104 0 5 0 109 0 39 0 0 39 12 38 0 1 361 366 87 2 3 0 47 0 47 0 47 2 6 0 0 68 19 1 6 1 1 47 0 1 47 2 6 0 0 68 19 1 6 1 1 0 47 0 1 82 2 6 0 0 68 1 9 1 6 1 1 0 47 0 1 82 1 7 0 1 77 11 5 0 118 0 0 5 0 1 82 1 7 0 1 77 12 1 4 1 84 0 6	0		7	2	8	0	0	86	91	7	c)	0	86	0	28	0	0	28	244
2 83 0 1 86 87 2 3 0 92 0 47 0 0 47 12 338 0 1 365 4 16 0 387 0 182 0 0 182 2 66 0 68 119 0 2 0 121 0 1 48 0 182 0 0 182 1 76 0 1 77 112 1 0 121 0 1 48 0 0 6 16 9 0 6 182 0 0 55 0 0 55 0 0 55 0 0 55 0 0 55 0 0 56 0 0 9 1 2 1 44 0 0 0 1 203 1 44 0 0 0 <t< td=""><td> 12 28 3 0 1 86 87 2 3 0 92 0 47 0 0 47 12 338 0 1 361 365 4 18 0 387 0 182 0 0 182</td><td>0</td><td></td><td>က</td><td>2</td><td>8</td><td>0</td><td>0</td><td>88</td><td>104</td><td>0</td><td>Ŋ</td><td>0</td><td>109</td><td>0</td><td>38</td><td>0</td><td>0</td><td>38</td><td>240</td></t<>	12 28 3 0 1 86 87 2 3 0 92 0 47 0 0 47 12 338 0 1 361 365 4 18 0 387 0 182 0 0 182	0		က	2	8	0	0	88	104	0	Ŋ	0	109	0	38	0	0	38	240
12 338 0 1 351 365 4 18 0 387 0 182 0 182	12 338 0 1 35 365 4 18 0 387 0 182 0 182 3 3 182 3 3 3 3 3 3 3 3 3	<u>_</u>		9	7	83	0	-	86	87	7	က	0	92	0	47	0	0	47	231
3 77 0 1 81 99 1 6 1 107 0 47 0 1 48 0 87 0 68 119 0 2 0 51 0 52 0 51 0 51 0 52 0 1 7 0 9 5 0 2 34 1 4 1 4 4 1 4 1 4 1 4 4 1 4 4 1 4 4 4 4 1 4 4	3 77 0 1 81 99 1 6 1 177 0 47 0 1 48 0 87 0 68 119 0 2 0 119 0 51 0 43 0 0 51 0 43 0 0 50 0 0 44 0	-		5	12	338	0	-	351	365	4	138	0	387	0	182	0	0	182	935
2 66 0 68 119 0 2 0 121 0 51 0 0 51 1 76 0 0 68 19 0 0 106 0 55 0 0 56 1 76 0 1 77 112 1 5 0 118 0 49 0 0 56 0 56 0 0 56 0 0 56 0<	2 66 0 68 119 0 2 0 121 0 51 0 0 55 1 76 0 1 77 112 1 6 46 0 0 54 1 76 0 1 77 112 1 454 0 265 0 49 0 0 549 1 75 0 1 1 454 0 202 0 1 203 1 203 0 1 203 1 203 0 1 203 0 0 2 0 1 203 0 <td>_</td> <td></td> <td>4</td> <td>es</td> <td>77</td> <td>0</td> <td>-</td> <td>81</td> <td>66</td> <td>_</td> <td>9</td> <td>~</td> <td>107</td> <td>0</td> <td>47</td> <td>0</td> <td>-</td> <td>48</td> <td>240</td>	_		4	es	77	0	-	81	66	_	9	~	107	0	47	0	-	48	240
0 87 0 0 87 10 87 11 12 15 10 16 0 55 0 0 45 6 305 0 1 112 1 45 0 148 0 44 0 40 49 18 643 0 2 31 429 7 39 1 844 0 20 0 1 203 2.7 98 0 0.5 34 174 0 384 0 1 384 0 1 203 0.9 3.5 0 0.8 4.6 0.1 384 0 1 202 0 0 384 0 1 203 0 3 0 3 0	0 87 0 0 87 199 1 8 0 105 0 55 6 305 0 2 313 429 3 21 14 6 0 59 0 49 18 643 0 2 313 429 3 21 1 454 0 202 0 1 209 18 643 0 3 644 0 4 0 40 0	0		~	2	99	0	0	89	119	0	2	0	121	0	51	0	0	51	241
1 75	1 75	2		S	0	87	0	0	87	66	~	80	0	108	0	22	0	0	22	255
6 305 0 2 313 429 3 21 1 454 0 202 0 1 203 186 63 0 3 664 794 7 3 91 841 0 984 0 1 3 664 794 7 3 91 841 0 987 0 1 3 688 0 1	6 305 0 2 313 429 3 21 1 454 0 202 0 1 203 18 643 0 3 664 794 0 3 644 10 3 64 0 1 3 64 10 3 64 1	_		7	-	75	0	_	77	112	-	Ŋ	0	118	0	49	0	0	49	246
18 643 0 3 664 794 7 39 1 841 0 384 0 1 385 2.7 96.8 0 0.5 34 0.8 4.6 0.1 0.97 0 0.7 0 0.3 0.9 33.5 0 2.0 2.0 1.4 0.4 2 0.1 43.9 0 20 0 0.1 20.1 18 6.7 0 3.6 7.7 3.6 1.8 3.8 0 3.6 0 0.1 0.0 9.7 0 <td>18 643 0 3 664 794 7 39 1 841 0 384 0 1 365 2.9 3.6 0 2 34 0.6 4 0.0</td> <td>4 12</td> <td>7</td> <td>-</td> <td>9</td> <td>305</td> <td>0</td> <td>7</td> <td>313</td> <td>429</td> <td>რ</td> <td>51</td> <td>-</td> <td>454</td> <td>0</td> <td>202</td> <td>0</td> <td>-</td> <td>203</td> <td>982</td>	18 643 0 3 664 794 7 39 1 841 0 384 0 1 365 2.9 3.6 0 2 34 0.6 4 0.0	4 12	7	-	9	305	0	7	313	429	რ	51	-	454	0	202	0	-	203	982
27 96.8 0 5 94.4 0.8 4.6 0.1 9.9 0 90.7 0 0.3 0.0	2.7 9.8 0.0 2.3 64.4 0.0 4.0 4.6 0.0 4.0 4.6 0.0 4.0 <td></td> <td>7</td> <td>7</td> <td>60</td> <td>643</td> <td>0</td> <td>6</td> <td>664</td> <td>794</td> <td>7</td> <td>39</td> <td>_</td> <td>841</td> <td>0</td> <td>384</td> <td>0</td> <td>_</td> <td>385</td> <td>1917</td>		7	7	60	643	0	6	664	794	7	39	_	841	0	384	0	_	385	1917
0.9 33.5 0 0.2 346.414 0.4 2 0.1 43.9 0 20 0 0.1 20.1 18 637 0 3 659 792 7 38 1 8 9.8 0 9.8 0 0.1 304 100 99.1 0 100 99.1 9.7 100 97.4 100 99.6 0 99.7 0 100 99.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9 33.5 0 0.2 34.6 414 0.4 2 0.1 43.9 0 20 0 0.1 20.1 18.6 37 0 3 658 1792 7 38 1 838 0 383 0 343 0 1 384 100 891 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18.5			2.7	8.96	0	0.5		94.4	0.8	4.6	0.1		0	99.7	0	0.3		
18 637 0 3 658 792 7 38 1 838 0 383 0 1 384 100 89.1 0 100 99.1 99.7 100 97.4 100 99.5 0 99.7 0 100 99.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 893 0 3 658 792 7 38 1 838 0 383 0 1 384 100 893 0 0 0 10 0 991 972 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.3	_	4	6.0	33.5	0	0.2	34.6		0.4	7	0.1	43.9	0	20	0	0.1	20.1	
100 99.1 0 100 99.1 99.7 100 97.4 100 99.6 0 99.7 0 100 99.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 99.1 0 100 99.1 99.7 100 97.4 100 99.6 0 99.7 0 100 99.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			27	9	637	0	က	658		7	38	~	838	0	383	0	~	384	1907
		00	=	8	100	99.1	0	100	99.1	99.7	100	97.4	100	9.66	0	99.7	0	100	99.7	99.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
	0 6 0 0 6 2 0 1 0 3 0 1 0 0 1	0		0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0

Oaklawn Ave. at Halpin Ave.
P.M.TRAFFIC COUNTS (4:00 p.m. to 6:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

TRAFFIC COUNTS PEAK HOUR 5:00 TO 6:00 P.M.

File Name : 1419-2TU Site Code : 00000002 Start Date : 12/13/2022 Page No : 2

Oaklawn Ave. at Halpin Ave.
P.M.TRAFFIC COUNTS (4:00 p.m. to 6:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

File Name : 1419-2TU Site Code : 00000002 Start Date : 12/13/2022 Page No : 3

TRAFFIC COUNTS	PEAK HOUR	5:00 TO 6:00 P.M.

	Int. Total			240	241	255	246	982		.963	980	8.66	0	0	2	0.2
	App. Tobal			48	51	22	49	203		.923	203	100	0	0	0	0
N K	Peds			-	0	0	0	τ-	0.5	250	-	100	0	0	0	0
OAKLAWN AVE EASTBOUND	Left			0	0	0	0	0	0	000	0	0	0	0	0	0
OAK	Thr			47	51	22	49	202	99.5	918	202	100	0	0	0	0
	Right			0	0	0	0	0	0	000	0	0	0	0	0	0
	Ago. Total			107	121	108	118	454		.938	454	100	0	0	0	0
VE.	Peds			_	0	0	0	-	0.2	.250	-	100	0	0	0	0
HALPIN AVE. NORTHBOUND	Left			9	7	00	Ŋ	21	4.6	.656	21	100	0	0	0	0
NO.	Thru			-	0	_	~	ო	0.7	.750	က	100	0	0	0	0
	Right			66	119	66	112	429	94.5	.901	429	100	0	0	0	0
	App. Total			81	68	87	77	313		839	311	99.4	0	0	7	9.0
ANE.	Peds			-	0	0	~	2	9.0	.500	2	100	0	0	0	0
DAKLAWN AVE WESTBOUND	Left	1 of 1		0	0	0	0	0	0	000	0	0	0	0	0	0
AK WE	Thr	Peak	PM	77	99	87	75	305	97.4	978.	303	99.3	0	0	7	0.7
	Right	5 PM	06:00	3	2	0	~	ဖ	1.9	.500	Ø	100	0	0	0	0
	App. Total	0.05:4	jins at	4	~	ıc	2	12		.600	12	100	0	0	0	0
VE.	Peds	0 PM t	on Beg	<u>_</u>	0	7	-	4	33.3	.500	4	100	0	0	0	0
HALPIN AVE. SOUTHBOUND	Left	n 05:0	rsection	τ-	₹-	က	0	2	41.7	417	ß	100	0	0	0	0
SOU	Thru	s Fron	ire Inte	0	0	0	0	0	0	000	0	0	0	0	0	0
	Right	Analysi	or Enti	7	0	0	_	က	52	375	ო	100	0	0	0	0
	Start Time	Peak Hour Analysis From 05:00 PM to 05:45 PM - Peak	Peak Hour for Entire Intersection Begins at 05:00 PM	05:00 PM	05:15 PM	05:30 PM	05:45 PM	Total Volume	% App. Total	HH.	CARS	% CARS	TRUCKS	% TRUCKS	BUSES	% BUSES

	CAKLAWN AVE Out	
Out HALPINAVE. Out 1708 1708	Peak Hour Data North Peak Hour Begins at 05:00 PM CARS TRUCKS BLOSES	Left Thru Right Peds 2 3 429 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	No No No No No No No No	

	OAKLAWN AVE. Out n Total 1190 658 1846 0 9 9 1193 664 1857 18 637 0 3 0 6 9 0 0 0 0 0 0 0 18 643 0 3 Right Thru Left Peds	
Out HALLWAVE. 256 77 52 26 77 62 26 77 62 7 0 15 52 7 0 0 0 0 7 0 0 15 55 7 0 0 15 55 88ph hall Peas	North 12/13/2022 04:00 PM 12/13/2022 06:46 PM 12/13/2022 06:46 PM 12/13/2022 06:46 PM 12/13/2022 06:46 PM 12/13/202 06:46 PM 12/13/2022 06:46 PM 12/13/202 06:46 PM 12/13/202 06:46 PM 12/13/2022 06:46 PM 12/13/202 06:46 PM 12/13/202 06:46 PM 12/13/2022 06:46 PM 12/13/202 06:46 PM 12/13/202 06:46 PM 12/13/2022 06:46 PM 12/13/202 06:46 PM 1	1
	Description	

Oaklawn Ave. at Halpin Ave.
P.M.TRAFFIC COUNTS (4:00 p.m. to 6:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

TRAFFIC COUNTS PEAK HOUR 5:00 TO 6:00 P.M.

File Name : 1419-2TU Site Code : 00000002 Start Date : 12/13/2022 Page No : 4

	Int. Total	216	243	237	231	927	240	240	254	246	980	1907		
	App. Total	37	28	38	47	181	48	51	25	49	203	384		20.1
DAKLAWN AVE. EASTBOUND	Left Peds	0	0	0	0	0	-	0	0	0	-	-	0.3	0.1
AKLAWN AVE EASTBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	0	0
OAKI EA BA	Thr	37	58	39	47	181	47	51	22	49	202	383	99.7	20.1
	Right	0	0	0	0	0	0	0	0	0	0	0	0	0
	App. Total	87	97	108	92	384	107	121	108	118	424	838		43.9
NE.	Peds	0	0	0	0	0	-	0	0	0	←	←	0.1	0.1
HALPIN AVE. NORTHBOUND	Left Peds	4	ß	S.	ო	17	9	7	œ	2	21	38	4.5	2
NOR.	Thru	0	2	0	7	4	-	0	~	-	က	7	0.8	0.4
	Right	83	90	103	87	363	66	119	66	112	429	792	94.5	41.5
	App. Total	88	88	87	86	347	8	29	86	77	311	658		34.5
ND A	Peds	0	0	0	-	-	~	0	0	-	2	е	0.5	0.2
WESTBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	0	0
OAKI WE:	Thru	82	84	82	83	334	77	65	86	75	303	637	8.96	33.4
	Right	ო	2	2	7	12	က	7	0	-	9	18	2.7	0.9
	App. Total	4	7	က	9	12	4	_	2	2	12	27		4.
ŠĒ	Peds	0	0	0	~	-	-	0	7	+	4	2	18.5	0.3
HALPIN AVE. SOUTHBOUND	Left	က	2	က	7	10	-	-	ო	0	2	15	55.6	0.8
SOU	Thru	0	0	0	0	0	0	0	0	0	0	0	0	0
	Right	-	0	0	ო	4	2	0	0	_	က	7	25.9	0.4
	Start Time	04:00 PM	04:15 PM	04:30 PM	04:45 PM	Total	MH 00:50	05:15 PM	05:30 PM	05:45 PM	Total	Grand Total	Apprch %	Total %

Oaklawn Ave. at Halpin Ave.
P.M.TRAFFIC COUNTS (4:00 p.m. to 6:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

TRAFFIC COUNTS PEAK HOUR 5:00 TO 6:00 P.M.

File Name : 1419-2TU Site Code : 00000002 Start Date : 12/13/2022 Page No : 5

		1	_	0	0	0	_	_	_	0	0	0
	Int. Total											
	Ago, Total	0	0	0	0	0	0	0	0	0	0	0
AVE.	-	0	0	0	0	0	0	0	0	0	0	00
DAKLAWN AVE EASTBOUND	Left Peds	0	0	0	0	0	0	0	0	0	0	00
OAKL	Thru	0	0	0	0	0	0	0	0	0	0	00
	Right	0	0	0	0	0	0	0	0	0	0	00
	App. Total	0	0	0	0	0	0	0	0	0	0	0
NP.	Peds	0	0	0	0	0	0	0	0	0	0	00
HALPIN AVE. NORTHBOUND	Left	0	0	0	0	0	0	0	0	0	0	00
NOR	Thru	0	0	0	0	0	0	0	0	0	0	00
	Right	0	0	0	0	0	0	0	0	0	0	00
	App. Total	0	0	0	0	0	0	0	0	0	0	0
AVE.	Peds	0	0	0	0	0	0	0	0	0	0	00
OAKLAWN AVE. WESTBOUND	Left	0	0	0	0	0	0	0	0	0	0	00
OAKI	Thru	0	0	0	0	0	0	0	0	0	0	00
	Right	0	0	0	0	0	0	0	0	0	0	00
	App. Total	0	0	0	0	0	0	0	0	0	0	0
VE.	Peds	0	0	0	0	0	0	0	0	0	0	00
HALPIN AVE. SOUTHBOUND	Left	0	0	0	0	0	0	0	0	0	0	0 0
SOL	Thru	0	0	0	0	0	0	0	0	0	0	00
	Right	0	0	0	0	0	0	0	0	0	0	00
	Start Time	04:00 PM	04:15 PM	04:30 PM	04:45 PM	Total	05:00 PM	05:15 PM	05:30 PM	05:45 PM	Total	Grand Total Approch %

Oaklawn Ave. at Halpin Ave.
P.M.TRAFFIC COUNTS (4:00 p.m. to 6:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

TRAFFIC COUNTS PEAK HOUR 5:00 TO 6:00 P.M.

File Name : 1419-2TU Site Code : 00000002 Start Date : 12/13/2022 Page No : 6

1													1					Į		
	SOLA	HALPIN AVE. SOUTHBOUND	UND			WES	WESTBOUND	j P		_	MATA	HALPIN AVE. NORTHBOUNI	<u>ا</u> و			OAKL	EASTBOUND	ë ⊊		
Right	Thru	Left	Peds	App. Total	Right	Thru	Left Pe	Peds App.	App. Total R	Right Ti	Thu	Left Pe	Peds Ap	App. Total	Right	Thru	Left Po	Peds	App. Total	Int. Total
0	0	0	0	0	0	2	0	0	2	0	0	-	0	-	0	-	0	0	-	4
0	0	0	0	0	0	0	0	0	0	-	0	0	0	-	0	0	0	0	0	•
0	0	0	0	0	0	7	0	0	2	-	0	0	0	_	0	0	0	0	0	n
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	4	0	0	4	2	0	_	0	ო	0	-	0	0	-	ω
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	-	0	0	-	0	0	0	0	0	0	0	0	0	0	-
0	0	0	0	0	0	_	0	0	_	0	0	0	0	0	0	0	0	0	0	~
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	7	0	0	7	0	0	0	0	0	0	0	0	0	0	2
0	0	0	0	0	0	9	0	0	9	2	0	—	0	3	0	~	0	0	-	10
0	0	0	0		0	100	0	0	9	2.99	0	33.3	0		0	100	0	0		
C	_	C	c	_	_	BO	c	C	9	20	c	4	_	3	C	10	_	_	4	

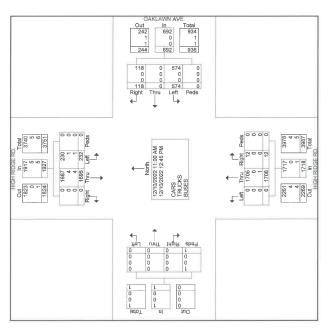
Mid-day TRAFFIC COUNTS (11:00 to 1:00 p.m.) Saturday December 10th, 2022 Locations 1 and 2

Stamford, CT

High Ridge Rd. at Oaklawn Ave.
Mid-day TRAFFIC COUNTS (11:00 a.m. to 1:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

TRAFFIC COUNTS PEAK HOUR 12:00 TO 1:00 P.M.

File Name : 1419-1SR2 Site Code : 00000001 Start Date : 12/10/2022 Page No : 1

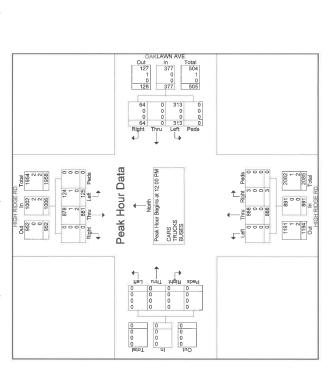

Groups Printed- CARS - TRUCKS - BUSES

	,																					
		Int. Total	508	533	494	529	2064		904	596	529	545	2274	4338			4327	99.7	2	0.1	9	0.1
		App. Total	0	0	0	_	_	0	0	0	0	0	0	_		0	-	100	0	0	0	0
	OND	Peds	0	0	0	~	-	(0	0	0	0	0	~	100	0	-	100	0	0	0	0
	EASTBOUND	Left Peds	0	0	0	0	0	•	>	0	0	0	0	0	0	0	0	0	0	0	0	0
	EAS	Thru	0	0	0	0	0		>	0	0	0	0	0	0	0	0	0	0	0	0	0
		Right	0	0	0	0	0		>	0	0	0	0	0	0	0	0	0	0	0	0	0
		App. Total	190	235	182	220	827	1	727	217	209	228	891	1718		39.6	1717	99.9	0	0	-	0.1
E RD.	QND	Peds	0	0	0	0	0		>	0	0	0	0	0	0	0	0	0	0	0	0	0
HIGH RIDGE RD	NORTHBOUND	Left	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
HIGH	NOR	Thru	189	228	181	220	818	0	230	216	209	227	888	1706	99.3	39.3	1705	6.66	0	0	-	0.1
		Right	-	7	_	0	0	,	-	_	0	-	m	12	0.7	0.3	12	100	0	0	0	0
		App. Total	96	9/	20	73	315		68	112	87	83	377	692		16	692	100	0	0	0	0
AVE.	ONS	Peds	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
OAKLAWN AVE	WESTBOUND	Left Peds	79	99	22	61	261	i		100	69	73	313	574	82.9	13.2	574	100	0	0	0	0
OAKI	WE	Thru	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Right	17	10	15	12	54	i	74	12	18	10	64	118	17.1	2.7	118	100	0	0	0	0
		App. Total	222	222	242	235	921	-	717	267	233	234	1006	1927		44.4	1917	99.5	Ŋ	0.3	ro	0.3
E RD.	QNN	Peds	0	0	0	0	0		>	0	0	0	0	0	0	0	0	0	0	0	0	0
HIGH RIDGE RD	SOUTHBOUND	Left	25	32	28	22	107	9	32	32	29	32	125	232	12	5.3	230	99.1		0.4	-	0.4
HIGH	SOU	Thru	197	190	214	213	814		740	235	204	202	881	1695	88	39.1	1687	99.5	4	0.2	4	0.2
		Right	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Start Time	11:00 AM	11:15 AM	11:30 AM	11:45 AM	Total		12:00 PM	12:15 PM	12:30 PM	12:45 PM	Total	Grand Total	Approch %	Total %	CARS	% CARS	TRUCKS	% TRUCKS	BUSES	% BUSES

High Ridge Rd. at Oaklawn Ave.
Mid-day TRAFFIC COUNTS (11:00 a.m. to 1:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

TRAFFIC COUNTS PEAK HOUR 12:00 TO 1:00 P.M.

File Name : 1419-1SR2 Site Code : 00000001 Start Date : 12/10/2022 Page No : 2



High Ridge Rd. at Oaklawn Ave.
Mid-day TRAFFIC COUNTS (11:00 a.m. to 1:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

TRAFFIC COUNTS PEAK HOUR 12:00 TO 1:00 P.M.

File Name : 1419-1SR2 Site Code : 00000001 Start Date : 12/10/2022 Page No : 3

	Int. Total			604	296	529	545	2274		.941	2270	8.66	7	0.1	7	0.1
	Ago. Total			0	0	0	0	0		000	0	0	0	0	0	0
QND	Peds			0	0	0	0	0	0	000	0	0	0	0	0	0
EASTBOUND	Left			0	0	0	0	0	0	000	0	0	0	0	0	0
Ā	Thru			0	0	0	0	0	0	000	0	0	0	0	0	0
	Right			0	0	0	0	0	0	000	0	0	0	0	0	0
	App. Total			237	217	209	228	891		.940	891	100	0	0	0	0
E RD	Peds			0	0	0	0	0	0	000	0	0	0	0	0	0
HIGH RIDGE RD NORTHBOUND	Left			0	0	0	0	0	0	000	0	0	0	0	0	0
声중	Thru			236	216	209	227	888	99.7	.941	888	100	0	0	0	0
	Right			_	_	0	~	ო	0.3	.750	n	100	0	0	0	0
	Ann. Tobal			95	112	87	83	377		.842	377	100	0	0	0	0
AVE.	Peds			0	0	0	0	0	0	000	0	0	0	0	0	0
DAKLAWN AVE. WESTBOUND	Left	1 of 1		71	100	69	73	313	83	.783	313	100	0	0	0	0
OAK WE	Thru	- Peak	PM	0	0	0	0	0	0	000	0	0	0	0	0	0
	Right	5 PM	12:00	24	12	18	10	64	17	799.	64	100	0	0	0	0
	App. Total	0 12:4	ins at	272	267	233	234	1006		.925	1002	99.6	7	0.2	7	0.2
E RD	Peds	0 PM	on Bec	0	0	0	0	0	0	000	0	0	0	0	0	0
HIGH RIDGE RD SOUTHBOUND	Thru Left Peds	n 12:0	ersecti	32	32	29	32	125	12.4	778.	124	99.2	~	0.8	0	0
할정	Thru	is Fro	ire Inte	240	235	204	202	881	87.6	918	878	99.7	_	0.1	2	0.2
	Right	Analys	for Ent	0	0	0	0	0	0	000	0	0	0	0	0	0
	Start Time	Peak Hour Analysis From 12:00 PM to 12:45 PM - Peak	Peak Hour for Entire Intersection Begins at 12:00 PM	12:00 PM	12:15 PM	12:30 PM	12:45 PM	Total Volume	% App. Total	PHF	CARS	% CARS	TRUCKS	% TRUCKS	BUSES	% BUSES

High Ridge Rd. at Oaklawn Ave. Mid-day TRAFFIC COUNTS (11:00 a.m. to 1:00 p.m.) Stamford, CT prepared by Reliable Traffic Counts, LLC Weather Clear

TRAFFIC COUNTS PEAK HOUR 12:00 TO 1:00 P.M.

File Name : 1419-15R2 Site Code : 00000001 Start Date : 12/10/2022 Page No : 4

			Inf. Total	505	531	493	528	2057	602	595	529	544	2270	4327		
			Apı: Total		0	0	-	-	0	0	0	0	0	~	_	0
		QND	Peds	0	0	0	_	τ-	0	0	0	0	0	_	100	0
		EASTBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	0	0
		Ë	Thru	0	0	0	0	0	0	0	0	0	0	0	0	0
			Right	0	0	0	0	0	0	0	0	0	0	0	0	0
					235	182	220	826	237	217	209	228	891	1717		39.7
	E RD.	QNO	Peds	0	0	0	0	0	0	0	0	0	0	0	0	0
	HIGH RIDGE RD.	NORTHBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	0	0
2	HGH	NOR	Thru	188	228	181	220	817	236	216	209	227	888	1705	99.3	39.4
5			Right	-	7	_	0	တ	—	~	0	<u>_</u>	ო	12	0.7	0.3
9			App. Total	96	9/	20	73	315	92	112	87	83	377	692		16
900	AVE.	QNO	Peds	0	0		0	0	0	0	0	0	0	0	0	0
	DAKLAWN AVE	WESTBOU	Left	79	99	22	61	261	71	100	69	73	313	574	82.9	13.3
	OAK	WE	Three	0	0	0	0	0	0	0	0	0	0	0	0	0
			Right	17	10	15	12	24	24	7	18	10	64	118	17.1	2.7
			Aug. Total	220	220	241	234	915	270	266	233	233	1002	1917		44.3
	E RD	QNO	Peds	0	0	0	0	0	0	0	0	0	0	0	0	0
	HIGH RIDGE RD	SOUTHBOUND	Left	25	31	28	22	106	31	32	29	32	124	230	12	5.3
	HIGH	Sou	Thru	195	189	213	212	808	239	234	204	201	878	1687	88	39
			Right	0	0	0	0	0	0	0	0	0	0	0	0	0
			Start Time	11:00 AM	11:15 AM	11:30 AM	11:45 AM	Total	12:00 PM	12:15 PM	12:30 PM	12:45 PM	Total	Grand Total	Apprch %	Total %

High Ridge Rd. at Oaklawn Ave.

TRAFFIC COUNTS PEAK HOUR 12:00 TO 1:00 P.M.

	TRAFFIC COUNTS PEAK HOUR	12:00 TO 1:00 P.M.		HIGH RIDGE RE SOUTHBOUND	Right Thru Left Pe	11:00 AM 0 1 0 0	0 0	0 1 0	0 0 0	Total 0 2 1 0	00	- 0			lotal 0 2 0 0	0 4	80 20	0 66.7 16.7
	File Name: 1419-1SR2 Site Code: 00000001			EASTBOUND	t Thru Left Peds Am Total Int Total	0	0 0 0 0 1	0 0 0 0 0	0 0 0 0 1	0 0 0 0 0		0 0 0 0 0	0 0 0	0 0 0	0 0 0 0 0 2	0 0 0 0 0	0 0 0 0	0 0 0 0 0
(11:00 a.m. to 1:00 p.m.) (17:00 a.m. to 1:00 p.m.) raffic Counts, LLC Clear			TRUCKS	HIGH RIDGE RD. NORTHBOUND	Right Thru Left Peds Age Talks Right	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0
Mid-day TRAFFIC COUNTS (11:00 a.m. to 1:00 p.m.) Stamford, CT prepared by Reliable Traffic Counts, LLC Weather Clear			Grouns Printed-TRUCKS	OAKLAWN AVE. WESTBOUND	Right Thru Left Peds Ans Total	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0		0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0
2	SOUNTS	:00 P.M.		HIGH RIDGE RD. SOUTHBOUND	nt Thru Left Peds Ass. Total	ł			0 1 0 0 1	0 3 0 0 3	1 0	0 0 0 0	0 0		0 1 1 0 2	0 4 1 0 5	20	20

Grand Total Apprch % Total %

12:00 PM 12:15 PM 12:30 PM 12:45 PM Total

Start Time Rig 11:00 AM 11:15 AM 11:30 AM 11:45 AM Total

High Ridge Rd. at Oaklawn Ave. Mid-day TRAFFIC COUNTS (11:00 a.m. to 1:00 p.m.) Stamford, CT prepared by Reliable Traffic Counts, LLC Weather Clear

File Name : 1419-1SR2 Site Code : 00000001 Start Date : 12/10/2022 Page No : 6

		Int. Total	2	_	-	0	4	-		Ψ-	0	0	2	φ		
			0	0	0	0	0	-		0	0	0	0	0		C
		Ago Total														
	QND	Peds	0	0	0	0	0	C	,	0	0	0	0	0	0	C
	EASTBOUNE	Left	0	0	0	0	0	C)	0	0	0	0	0	0	С
	EA	Thr	0	0	0	0	0	_	,	0	0	0	0	0	0	C
		Right	0	0	0	0	0	C	,	0	0	0	0	0	0	C
		App. Total	-	0	0	0	-	C)	0	0	0	0	_		16.7
	8 S	Peds	0	0	0	0	0	c	,	0	0	0	0	0	0	C
	NEGE THBOL	Left P	0	0	0	0	0	c	,	0	0	0	0	0	0	С
S	HIGH RIDGE RD NORTHBOUND	Thru	-	0	0	0	-	c		0	0	0	0	—	00	16.7
- BUS	_	Right	0	0	0	0	0	c	,	0	0	0	0	0	0	0
rinted		Aup. Total	0	0	0	0	0	C)	0	0	0	0	0		C
Groups	발우	Peds	0	0	0	0	0	c	,	0	0	0	0	0	0	C
5	OAKLAWN AVE WESTBOUND		0	0	0	0	0	-		0	0	0	0	0	0	c
	KLA!	u Left	0	0	0	0	0			0	0	0	0	0	0	0
	0 5	Thru		_						_	_			_	_	_
		Right			_			_	_	_	_			_	_	
		Appl. Total	-	_	_	0	ന	*		_	0	0	2	5		83.3
	E RD.	Peds	0	0	0	0	0	c	•	0	0	0	0	0	0	C
	HIGH RIDGE RD SOUTHBOUND	Left	0	-	0	0	-	C)	0	0	0	0	~	20	16.7
	SOU	Thr	+	0	-	0	7	-	-		0	0	7	4	8	66.7
		Right	0	0	0	0	0	c)	0	0	0	0	0	0	C
		art Time	:00 AM	:15 AM	:30 AM	45 AM	Total	NO OU		2:15 PM	30 PM	245 PM	Total	and Total	mbrch %	Total %

Oaklawn Ave. at Halpin Ave.
Mid-day TRAFFIC COUNTS (11:00 a.m. to 1:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

TRAFFIC COUNTS PEAK HOUR 12:00 TO 1:00 P.M.

File Name : 1419-2s Site Code : 00000002 Start Date : 12/10/2022 Page No : 1

OAKLAWL AVE. HALPIN AVE. OAKLAWL AVE. WESTBOUND NORTHBOUND EASTBOUND	트	0 0 93 73 1 4 0 78 1 29 0 0 30	59 2 4 0 65 0 33 0 0 33	0 0 68 70 0 3 0 73 0 30 0 0 30	0 0 73 62 0 1 0 63 0 23 0	1 115 0 0 116	0 0 90 80 0 6 0 86 0 33 0 0 33	97 77 2 3 0 82 0 33 2 0	0 0 84 57 1 5 0 63 0 30 0 0 30	0 0 80 67 2 4 0 73 0 33 0 0 33	351 281 5 18 0 304 0 129 2 0	642 0 1 655 545 8 30 0 583 1 244 2 0 247 1501	98 0 0.2 93.5 1.4 5.1 0 0.4 98.8 0.8 0	7	0 1 655 545 8 30 0 583 1 243 2 0 246	100 100 100 100 100 0 100 100 99.6 100	0 0 0 0 0 0 0 0 0 0 0 0 0	
-	Total Right	2 1	1	2	3	8	_	1	3	ъ Г	8	16 12	1.8	1.1 0.8	16 12	100 100	0	
SOUTHBOUND	Right Thru Left Peds Am.	0 0 0 2	0 0 1 0	1 0 1 0	1 0 2 0	2 0 4 2	0 0 1 0	0 0 1 0	1 0 1	1 0 2 0	2 0 5 1	4 0 9 3	0 56.2	0.3 0 0.6 0.2	4 0 9 3	100 0 100 100	0 0 0 0	
	Start Time	11:00 AM	11:15 AM	11:30 AM	11:45 AM	Total	12:00 PM	12:15 PM	12:30 PM	12:45 PM	Total	Grand Total	Apprch %	Total %	CARS	% CARS	TRUCKS	ON TELLORIS

Oaklawn Ave. at Halpin Ave.
Mid-day TRAFFIC COUNTS (11:00 a.m. to 1:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

File Name : 1419-2s Site Code : 00000002 Start Date : 12/10/2022 Page No : 2

TRAFFIC COUNTS PEAK HOUR 12:00 TO 1:00 P.M.

Out 797 0 1 798 Total 1452 0 1 1453 In 655 0 0 655 1 583 584 0 0 0 0 0 0 0 0 1 583 584 Out In Total Right Thru Left Peds North 12/10/2022 11:00 AM 12/10/2022 12:45 PM E 0 0 9 22 0 0 22 22 0 0

Oaklawn Ave. at Halpin Ave.
Mid-day TRAFFIC COUNTS (11:00 a.m. to 1:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

TRAFFIC COUNTS 12:00 TO 1:00 P.M. PEAK HOUR

TRAFFIC COUNTS PEAK HOUR 12:00 TO 1:00 P.M.

File Name : 1419-2s Site Code : 00000002 Start Date : 12/10/2022 Page No : 3

File Name : 1419-2s Site Code : 00000002 Start Date : 12/10/2022 Page No : 4

Oaklawn Ave. at Halpin Ave.
Mid-day TRAFFIC COUNTS (11:00 a.m. to 1:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

	7				0		0	6	4		e	4	0	0	0	0	_
	Int Total	100			21(215	18	189	797		.92	794	100				
	Ann Tokal	ONL ON			33	35	30	33	131		.936	131	100	0	0	0	C
AVE	Peds				0	0	0	0	0	0	000	0	0	0	0	0	c
DAKLAWL AVE	eff				0	7	0	0	7	1.5	.250	7	100	0	0	0	<
OAK	Thru				33	33	30	33	129	98.5	226	129	100	0	0	0	C
	Richt				0	0	0	0	0	0	000	0	0	0	0	0	c
	Ann Total	and dela			98	82	63	73	304		884	304	100	0	0	0	C
VE.	Peds				0	0	0	0	0	0	000	0	0	0	0	0	C
HALPIN AVE.	left				9	က	2	4	18	5.9	.750	19	100	0	0	0	c
HA R	Thru				0	2	-	7	ა	1.6	.625	2	100	0	0	0	c
	Right				80	77	22	67	281	92.4	878	281	100	0	0	0	c
	Ann. Total	and other			06	97	84	80	351		.905	351	100	0	0	0	0
AVE.	Peds				0	0	0	0	0	0	000	0	0	0	0	0	c
OAKLAWL AVE	Left	7	1 01 1		0	0	0	0	0	0	000	0	0	0	0	0	¢
OAK	Thru	0	Peak	PM	88	92	82	79	345	98.3	808	345	100	0	0	0	C
	Right		- MA	12:00	_	7	2	-	ဖ	1.7	.750	9	100	0	0	0	c
	Ann Tolk		0 12.4	ins at	-	-	e	က	Φ		.667	∞	100	0	0	0	c
WE.	-		U PM 1	on Beg	0	0	-	0	Ψ-	12.5	.250	-	100	0	0	0	c
SOLITHBOLING	eff	0	n 12:0	rsectic	_	-	-	7	ß	62.5	.625	S	100	0	0	0	c
SOL	Thru	L	S Fron	re Inte	0	0	0	0	0	0	000	0	0	0	0	0	c
	Right		Analysi	or Ent	0	0	-	-	7	25	.500	2	100	0	0	0	c
	Start Time	4	Peak Hour Analysis From 12:00 PM to 12:45 PM - Peak 1 of	Peak Hour for Entire Intersection Begins at 12:00 PM	12:00 PM	12:15 PM	12:30 PM	12:45 PM	Total Volume	% App. Total	PHF	CARS	% CARS	TRUCKS	% TRUCKS	BUSES	OZ DI ICEC

0 0 0 0 0 0 0 0 Left Peds 345 0 0 345 Thru

Peak Hour Begins at 12:00 PM

181 0 181 1870T 864 0 0 864

3uO 38£ 0 0 38£

Peak Hour Data

000 Right

1 29 0 32 0 30 0 23 1 114 73 65 73 63 279 583 88 82 83 73 73 seds 0 0 0 0 Groups Printed- CARS OAKLAWI AVE. WESTBOUND NORTHBOUND 00000 000 5.1 ω ω υ 4 ω 73 73 70 70 62 264 80 77 57 67 281 90 97 84 80 351 655 12 642 1.8 98 0.8 42.8 89 95 82 79 79 345 16 20000 00000 000 Grand Total 4 Apprch % 25 Total % 0.3 Start Time 11:00 AM 11:15 AM 11:30 AM 11:45 AM 12:00 PM 12:15 PM 12:30 PM 12:45 PM Total

103 203 168 173 162 706

App. Total 30 32 30 23 115

00000

210 215 180 189 794

33 33

00000

246 | 1500

000

Oaklawn Ave. at Halpin Ave.
Mid-day TRAFFIC COUNTS (11:00 a.m. to 1:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

TRAFFIC COUNTS PEAK HOUR 12:00 TO 1:00 P.M.

File Name : 1419-2s Site Code : 00000002 Start Date : 12/10/2022 Page No : 5

I KAPPIC COUNTS	PEAK HOUR	12:00 TO 1:00 P.M.	

File Name : 1419-2s Site Code : 00000002 Start Date : 12/10/2022 Page No : 6

		App. Total	0	-	0	0	-	0	0	0	0	0	_		400
	AVE.	Peds	0	0	0	0	0	0	0	0	0	0	0	0	<
	OAKLAWL AVE EASTBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	0	c
	OAKL	Thru	0	~	0	0	-	0	0	0	0	0	~	100	000
		Right	0	0	0	0	0	0	0	0	0	0	0	0	c
		April Total	0	0	0	0									
	일일	Peds ,	0	0	0	0	0	0	0	0	0	0	0	0	¢
	HALPIN AVE. NORTHBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	0	c
SES	NOR	Thru	0	0	0	0	0	0	0	0	0	0	0	0	c
d- BUS		Right	0	0	0	0	0	0	0	0	0	0	0	0	¢
Groups Printed- BUSES		Airb. Total	0	0	0	0	0	0	0	0	0	0	0		c
sconbs	AVE.	Peds	0	0	0	0	0	0	0	0	0	0	0	0	c
O	OAKLAWL AVE WESTBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	0	c
	OAKL	Thru	0	0	0	0	0	0	0	0	0	0	0	0	c
		Right	0	0	0	0	0	0	0	0	0	0	0	0	c
		App. Total	0	0	0	0	0	0	0	0	0	0	0		C
	VE.	Peds	0	0	0	0	0	0	0	0	0	0	0	0	c
	HALPIN AVE. SOUTHBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	0	C
	Sol	Thru	0	0	0	0	0	0	0	0	0	0	0	0	c
		Right	0	0	0	0	0	0	0	0	0	0	0	0	c
		Start Time	11:00 AM	11:15 AM	11:30 AM	11:45 AM	Total	12:00 PM	12:15 PM	12:30 PM	12:45 PM	Total	Grand Total	Apprch %	Total 0/

| CARLAWL AVE | TRUCKS | TAUPINA | TRUCKS | TAUPINA | TRUCKS | TRU

00000

00000

00000

12:00 PM 12:15 PM 12:30 PM 12:45 PM Total

Grand Total Apprch % Total %

PARKING OBSERVATIONS Tables 1 and 2 Thursday and Saturday December 15th and 17th, 2022 Stamford Parking Lot and Halpin Ave. Stamford, CT

| Refrice Trains County, 1446 | Vehicle Pata Collection Service | Hadram B. Estima, 57 6712 Fall 20150/002 for 2015/60215 strategolom

Table 1

PARKING OBSERVATIONS Stamford Parking lot and Halpin Ave. Thursday December 15th, 2022

Stamford, CT

	Parking Lot A	naipin Ave. b
TIME	120 Available Spaces	12 Available Spaces
before 4:00 p.m.	45	12
after 6:30 p.m.	55	11

Source: Reliable Traffic Counts, LLC field observations conducted on Thursday December15th, 2022

PARKING OBSERVATIONS
Stamford Parking lot and Halpin Ave.
Saturday December 17th, 2022
Stamford, CT

	Parking Lot "A"	Halpin Ave. "B"
TIME	120 Available Spaces	12 Available Spaces
before 11:00 a.m.	36	6
after 1:00 p.m.	42	80

Source: Reliable Traffic Counts, LLC field observations conducted on Saturday December17th, 2022

P.M.TRAFFIC COUNTS (4:00 to 6:00 p.m.) Location 1

Wednesday February 8th, 2023 Norwalk, CT Stamford

High Ridge Rd. at Cross Rd.
P.M. TRAFFIC COUNTS (4:00 to 6:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

TRAFFIC COUNTS PEAK HOUR 5:00 TO 6:00 P.M.

File Name : 1432-1W Site Code : 00000001 Start Date : 2/8/2023 Page No : 1

	Int. Total			544		2136	575	649	554	258	2336	į	4472			4444	99.4	2	0	26	
	Are Telsi	21	15	22	15	73	17	4	24	26	20		154		3.4	154	100	0	0	0	
2 QN	Peds	c	n	2	0	2	0	-	0	0	-		9	3.9	0.1	9	100	0	0	0	
CROSS RD. EASTBOUND	Left	4	-	9	က	14	2	4	က	သ	14		28	18.2	9.0	28	100	0	0	0	
RA	Thru	C	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	
	Right	17	-	14	12	24	15	0	21	21	99		120	77.9	2.7	120	100	0	0	0	
	Azes Total	287	234	277	294	1092	317	368	294	287	1266		2358		52.7	2351	99.7	0	0	7	
E RD	Peds	0	0	7	0	4	0	0	0	0	0		4	0.2	0.1	4	100	0	0	0	
HIGH RIDGE RD NORTHBOUND	Left	c	0	0	~	~	0	0	_	-	2		ಣ	0.1	0.1	ო	100	0	0	0	
HGH	Thru	285	234	275	288	1082	317	368	293	286	1264		2346	99.5	52.5	2339	99.7	0	0	7	
WESTBOUND NORTHBOU	Right	c	0	0	5	S	0	0	0	0	0	3 12	Ω.	0.2	0.1	ιΩ	100	0	0	0	
	Ann Total	2	-	2	0	2	0	0	-	0	-		9		0.1	9	100	0	0	0	
QND	Peds	0	-	2	0	S	0	0	_	0	-		9	100	0.1	9	100	0	0	0	
WESTBOUND	Left Peds		0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	
WE	Thr	c	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	
	Right	C	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	
	den Total	247	244	243	232	996	241	267	235	245	988		1954		43.7	1933	98.9	2	0.1	19	
E RD	Peds	c	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	
SOUTHBOUND	Left Peds	c	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	
HGH	Thru	747	243	243	227	096	240	265	234	245	984		1944	99.5	43.5	1923	98.9	7	0.1	19	
	Right	C	-	0	2	9	~	2	~	0	4		10	0.5	0.2	10	100	0	0	0	
	Start Time	04-00 PM	04:15 PM	04:30 PM	04:45 PM	Total	05:00 PM	05:15 PM	05:30 PM	05:45 PM	Total		Grand Total	Apprch %	Total %	CARS	% CARS	TRUCKS	% TRUCKS	BUSES	

High Ridge Rd. at Cross Rd. P.M. TRAFFIC COUNTS (4:00 to 6:00 p.m.) Stamford, CT prepared by Reliable Traffic Counts, LLC Weather Clear

TRAFFIC COUNTS PEAK HOUR 5:00 TO 6:00 P.M.

File Name : 1432-1W Site Code : 00000001 Start Date : 2/8/2023 Page No : 3

High Ridge Rd. at Cross Rd.
P.M. TRAFFIC COUNTS (4:00 to 6:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

File Name : 1432-1W Site Code : 00000001 Start Date : 2/8/2023 Page No : 4

TRAFFIC COUNTS PEAK HOUR 5:00 TO 6:00 P.M.

		Int. Total	549	491	240	537	2117	573	648	551	555	2327	4444		
		Ago Total	21	15	22	15	73	17	4	54	26	81	154		3.5
	SD.	Peds	0	က	7	0	c)	0	_	0	0	-	9	3.9	0.1
	CROSS RD. EASTBOUND	Left	4	-	9	က	4	2	4	က	5	14	28	18.2	9.0
	E SA	Thr	0	0	0	0	0	0	0	0	0	0	0	0	0
		Right	17	7	4	12	24	15	6	21	21	99	120	77.9	2.7
		App. Total	287	233	276	293	1089	316	368	292	286	1262	2351		52.9
	E RD	Peds	2	0	7	0	4	0	0	0	0	0	4	0.2	0.1
	HIGH RIDGE RD NORTHBOUND	Left Peds	0	0	0	-	τ-	0	0	-	_	2	က	0.1	0.1
(RS	HGH	Thru	285	233	274	287	1079	316	368	291	285	1260	2339	99.5	52.6
ed-C		Right	0	0	0	2	2	0	0	0	0	0	S	0.2	0.1
Sroups Print		App. Total	2	-	2	0	S	0	0	_	0	_	9		0.1
Grou	QND	Peds	2	<u>_</u>	7	0	ιΩ	0	0	-	0	-	9	100	0.1
	WESTBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	0	0
	WE	Thru	0	0	0	0	0	0	0	0	0	0	0	0	0
		Right	0	0	0	0	0	0	0	0	0	0	0	0	0
		App. Total	239	242	240	229	950	240	266	234	243	983	1933		43.5
	E RD	Peds	0	0	0	0	0	0	0	0	0	0	0	0	0
	HIGH RIDGE RD SOUTHBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	0	0
	NIGH	Thru	239	241	240	224	944	239	264	233	243	979	1923	99.5	43.3
		Right	0	_	0	2	9	_	7	-	0	4	10	0.5	0.2
		Start Time	04:00 PM	04:15 PM	04:30 PM	04:45 PM	Total	05:00 PM	05:15 PM	05:30 PM	05:45 PM	Total	Grand Total	Apprch %	Total %

| HIGH RIDGE RD | STATTME | Right | Throu | Left | Peats | Assume | Right | Through | Right | Through

	Out In Total 1 0 0 0 0 0 0 0 0 0	
17776 17776 17776 17777 1777	Peak Hour Data North North North North North Begins at 05 00 PM Nort	Column C
	1610T 1010 100 100 100 100 100 100 100 100	

TRAFFIC COUNTS PEAK HOUR 5:00 TO 6:00 P.M.

High Ridge Rd. at Cross Rd.
P.M. TRAFFIC COUNTS (4:00 to 6:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

File Name : 1432-1W Site Code : 00000001 Start Date : 2/8/2023 Page No : 5

High Ridge Rd. at Cross Rd.
P.M. TRAFFIC COUNTS (4:00 to 6:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

TRAFFIC COUNTS PEAK HOUR 5:00 TO 6:00 P.M.

File Name : 1432-1W Site Code : 00000001 Start Date : 2/8/2023 Page No : 6

			Int. Total	7	က	4	က	17		7	-	က	က	6	56		
			Ago Total	0	0	0	0	0		0	0	0	0	0	0		0
	5	ON	Peds	0	0	0	0	0		0	0	0	0	0	0	0	0
	CROSS RD	EASTBOUND	Left	0	0	0	0	0		0	0	0	0	0	0	0	0
	S	EAS	Thru	0	0	0	0	0		0	0	0	0	0	0	0	0
			Right	0	0	0	0	0		0	0	0	0	0	0	0	0
			App. Total	0	_	_	_	က	3 18	_	0	2	-	4	_		56.9
	RIDGE RD.	OND	Peds	0	0	0	0	0		0	0	0	0	0	0	0	0
	RIDG	NORTHBOUN	Left	0	0	0	0	0		0	0	0	0	0	0	0	0
BUSES	HGH	NOR	Thru	0	_	~	-	က		_	0	7	-	4	7	100	26.9
d-BU			Right	0	0	0	0	0		0	0	0	0	0	0	0	0
Groups Printed-			Agg. Total	0	0	0	0	0		0	0	0	0	0	0		0
Groups		ONC.	Peds	0	0	0	0	0		0	0	0	0	0	0	0	0
Ŭ		WESTBOUN	Left	0	0	0	0	0		0	0	0	0	0	0	0	0
		WE	Thru	0	0	0	0	0		0	0	0	0	0	0	0	0
			Right	0	0	0	0	0		0	0	0	0	0	0	0	0
			Asp. Total	7	7	က	2	14		_	-	Ψ-	2	2	19		73.1
	E RD.	OND	Peds	0	0	0	0	0		0	0	0	0	0	0	0	0
	HIGH RIDGE RD	SOUTHBOUND	Left	0	0	0	0	0		0	0	0	0	0	0	0	0
	HIGH	SOU	Thru	7	2	ო	2	14		_	-	-	7	2	19	100	73.1
			Right	0	0	0	0	0		0	0	0	0	0	0	0	0
			Start Time	04:00 PM	04:15 PM	04:30 PM	04:45 PM	Total		05:00 PM	05:15 PM	05:30 PM	05:45 PM	Total	Grand Total	Apprch %	Total %

WESTBOUND

Thru Left Peds

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Right 0 0 0 0 0

00000 00000

00000

00000

00000

00000

00000 00000 00000 05:00 PM 05:15 PM 05:30 PM 05:45 PM Total 000

000

000

Grand Total Apprch % Total %

0 0

Mid-day TRAFFIC COUNTS (11:00 to 1:00 p.m.)

Saturday February 11th, 2023 Location 1

Norwalk, CT Stamford

| CATEDIO TRETTO COUNTY | 146 | 146 | 150

High Ridge Rd. at Cross Rd.
Mid-day TRAFFIC COUNTS (11:00 to 1:00 p.m.)
Stanford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

TRAFFIC COUNTS PEAK HOUR 11:30 TO 12:30 P.M.

File Name : 1432-1s Site Code : 00000001 Start Date : 2/11/2023 Page No : 1

		Int. Total	442	416	511	453	1822	478	418	474	486	1856	3678			3665	9.66	ო	0.1	10	0.3
			10	16	13	7	46	12	12	15	7	20	96		5.6	96	100	0	0	0	C
3D.	JND		-	<u>_</u>	0	0	7	~	0	4	0	ß	7	7.3	0.2	7	100	0	0	0	_
CROSS RD	EASTBOUND	Left Peds	7	7	ιΩ	7	=	2	4	0	0	9	17	17.7	0.5	17	100	0	0	0	_
CR	EAS	Thru	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
		Right	7	13	œ	ß	33	6	ω	7	÷	39	72	75	2	72	100	0	0	0	_
		App. Total	211	201	254	221	887	232	181	238	235	886	1773		48.2	1767	99.7	~	0.1	2	0
E RD.	QNO	Peds	-	0	0	0	~	~	0	0	0	τ-	2	0.1	0.1	7	100	0	0	0	C
HIGH RIDGE RD	NORTHBOUND	Left Peds	0	0	0	2	2	0	0	0	0	0	2	0.1	0.1	2	100	0	0	0	C
HIGH	NOR	Thru	210	201	254	219	884	231	181	238	235	882	1769	86.6	48.1	1763	7.66	-	0.1	ιΩ	C
		Right	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Ago. Total	2	0	0	2	4	0	0	_	0	-	C		0.1	2	100	0	0	0	-
	QND	Peds	2	0	0	2	4	0	0		0	-	5	100	0.1	τO	100	0	0	0	C
	WESTBOUND	Left Peds	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	WE	Thro	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Right	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
		App. Total	219	199	244	223	885	234	225	220	240	919	1804		49	1797	9.66	2	0.1	2	0
E RD.	QND	Peds	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
HIGH RIDGE RD	SOUTHBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
HIGH	SOU	Thru	219	197	241	222	879	233	223	218	239	913	1792	99.3	48.7	1785	9.66	2	0.1	c)	0
		Right	0	2	n	_	9	_	8	2	_	9	12	0.7	0.3	12	100	0	0	0	
		Start Time	11:00 AM	11:15 AM	11:30 AM	11:45 AM	Total	12:00 PM	12:15 PM	12:30 PM	12:45 PM	Total	Grand Total	Approch %	Total %	CARS	% CARS	TRUCKS	% TRUCKS	BUSES	01010 /0

High Ridge Rd. at Cross Rd.
Mid-day TRAFFIC COUNTS (11:00 to 1:00 p.m.)
Stanford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

TRAFFIC COUNTS PEAK HOUR 11:30 TO 12:30 P.M.

File Name : 1432-1s Site Code : 00000001 Start Date : 2/11/2023 Page No : 3

	Int. Total			511	453	478	418	1860		910	1853	9.66		0.1	9	0.3
	Aco. Total			13	7	12	12	44		.846	44	100	0	0	0	0
SP.	Peds			0	0	τ-	0	-	2.3	.250	-	100	0	0	0	0
CROSS RD. EASTBOUND	Left			ю	2	2	4	13	29.5	.650	13	100	0	0	0	0
28	Thru			0	0	0	0	0	0	000	0	0	0	0	0	0
	Right			œ	5	6	œ	30	68.2	.833	30	100	0	0	0	0
	Ann Total			254	221	232	181	888		874	885	99.7	0	0	က	0.3
E RD	Peds			0	0	_	0	-	0.1	.250	-	100	0	0	0	0
HIGH RIDGE RD NORTHBOUND	Left			0	2	0	0	7	0.2	.250	2	100	0	0	0	0
HGH ROR	Thru			254	219	231	181	882	99.7	.871	882	7.66	0	0	က	0.3
	Right			0	0	0	0	0	0	000	0	0	0	0	0	0
	Ann Total			0	7	0	0	2		.250	2	100	0	0	0	0
QND	Peds			0	7	0	0	N	100	.250	7	100	0	0	0	0
WESTBOUND	Left	1 of 1		0	0	0	0	0	0	000	0	0	0	0	0	0
WE	Thru	Peak	AM	0	0	0	0	0	0	000	0	0	0	0	0	0
	Right	- MH	11:30 AI	0	0	0	0	0	0	000	0	0	0	0	0	0
	Aco. Total	0 12:30	ins at	244	223	234	225	926		949	922	9.66	_	0.1	က	0.3
E RD.	Peds	D AM 1	on Bec	0	0	0	0	0	0	000	0	0	0	0	0	0
HIGH RIDGE RD SOUTHBOUND	Thru Left	n 11:3	rsection	0	0	0	0	0	0	000	0	0	0	0	0	0
HIGH	Thru	s Fror	re Inte	241	222	233	223	919	99.2	.953	915	9.66	-	0.1	ო	0.3
	Right	Analysi	for Entire Intersection Begins at	e	~	~	2	7	0.8	.583	7	100	0	0	0	0
	Start Time	Peak Hour Analysis From 11:30	Peak Hour fo	11:30 AM	11:45 AM	12:00 PM	12:15 PM	Total Volume	% App. Total	PH	CARS	% CARS	TRUCKS	% TRUCKS	BUSES	% BUSES

	Out	
Out HIGH PRICE FRO. Out 100 995 922 1877 1877 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Peak Hour Data North Peak Hour Begins at 11:30 AM CARS EUSES	Fig. Fig.
	## null null null null null null null nu	

High Ridge Rd. at Cross Rd.
Mid-day TRAFFIC COUNTS (11:00 to 1:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

TRAFFIC COUNTS PEAK HOUR 11:30 TO 12:30 P.M.

File Name : 1432-1s Site Code : 00000001 Start Date : 2/11/2023 Page No : 4

									Group	Groups Printed- CARS	ed-C	ARS									
		SOL	IIGH RIDGE RE SOUTHBOUND	HIGH RIDGE RD SOUTHBOUND			WE	WESTBOUND	OND			H H H	HIGH RIDGE RD NORTHBOUND	E RD.			EAS	CROSS RD. EASTBOUND	SD.		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	Ago, Total	Right	Thru	Left	Peds	Act. Total	Int. Total
11:00 AM	0	217	0	0	217	0	0	0	2	2	0	209	0	-	210	1	0	2	-	10	439
11:15 AM	2	197	0	0	199	0	0	0	0	0	0	201	0	0	201	13	0	7	<u></u>	16	416
11:30 AM	က	240	0	0	243	0	0	0	0	0	0	252	0	0	252	ω	0	2	0	13	508
11:45 AM	_	221	0	0	222	0	0	0	7	2	0	219	7	0	221	2	0	2	0	7	452
Total	9	875	0	0	881	0	0	0	4	4	0	881	7	-	884	33	0	7	2	46	1815
12:00 PM	_	231	C	C	232	-	C	C	c	C	0	230	C	+	234	o	c	c	*	5	476
00.7	- 1	0 1	,)	707	0		٠ د	0	0	٠ د	2	> -		2	0	>	4	-	7	1
12:15 PM	7	223	0	0	225	0	0	0	0	0	0	9	0	0	<u>\$</u>	00	0	4	0	12	418
12:30 PM	7	217	0	0	219	0	0	0	-	-	0	237	0	0	237	7	0	0	4	15	472
12:45 PM	_	239	0	0	240	0	0	0	0	0	0	234	0	0	234	11	0	0	0	=	485
Total	9	910	0	0	916	0	0	0	-	-	0	882	0	-	883	38	0	9	ß	20	1850
Srand Total	12	1785	C	C	1707	_	C	C	ĸ	Ľ	<	4763	C	c	1787	72	C	1	٦	90	3005
100	4 !	3	۱ د	,	5)	> 1))	>	3	4	1	5	1	>	-	-	B	2000
Apprch %	0.7	99.3	0	0		0	0	0	9		0	8.66	0.1	0.1		75	0	17.7	7.3		
Total %	0.3	48.7	0	0	49	0	0	0	0.1	0.1	0	48.1	0.1	0.1	48.2	^	С	0.5	00	2 6	

High Ridge Rd. at Cross Rd.
Mid-day TRAFFIC COUNTS (11:00 to 1:00 p.m.)
Stamford, CT
prepared by Reliable Traffic Counts, LLC
Weather Clear

TRAFFIC COUNTS PEAK HOUR 11:30 TO 12:30 P.M.

Groups Printed- TRUCKS HIGH RIDGE RD. SOUND NORTHBOUND

00000

00000 12 0 0 0 0 0

Peds 0 0 0 0

00000

Start Time Right III 11:00 AM 0 11:15 AM 0 11:30 AM 0 11:45 AM 0 Total 0

File Name : 1432-1s Site Code : 00000001 Start Date : 2/11/2023 Page No : 5

High Ridge Rd. at Cross Rd. Mid-day TRAFFIC COUNTS (11:00 to 1:00 p.m.) Stamford, CT prepared by Reliable Traffic Counts, LLC Weather Clear

TRAFFIC COUNTS PEAK HOUR 11:30 TO 12:30 P.M.

File Name : 1432-1s Site Code : 00000001 Start Date : 2/11/2023 Page No : 6

		App. Total	0	0	0	0	0	0	0	0	0	0	0		0
	S. C.	Peds	0	0	0	0	0	0	0	0	0	0	0	0	0
	CROSS RD. EASTBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	0	0
	FASE	Thru	0	0	0	0	0	0	0	0	0	0	0	0	0
		Right	0	0	0	0	0	0	0	0	0	0	0	0	0
		App. Total	-	0	7	0	က	-	0	-	0	7	5		90
	E RD.	Peds	0	0	0	0	0	0	0	0	0	0	0	0	0
	HIGH RIDGE RD NORTHBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	0	0
SES	HGH	Thru	-	0	2	0	ო	-	0	-	0	7	Ŋ	100	20
d-BU		Right	0	0	0	0	0	0	0	0	0	0	0	0	0
S Printe		App. Total	0	0	0	0	0	0	0	0	0	0	0		0
Groups	QN	Peds	0	0	0	0	0	0	0	0	0	0	0	0	0
	WESTBOU	Left	0	0	0	0	0	0	0	0	0	0	0	0	0
	WE	Thu Th	0	0	0	0	0	0	0	0	0	0	0	0	0
		Right	0	0	0	0	0	0	0	0	0	0	0	0	0
		App. Total	-	0	_	0	7	2	0	~	0	ო	2		20
	E RD.	Peds	0	0	0	0	0	0	0	0	0	0	0	0	0
	HIGH RIDGE RD SOUTHBOUND	Left	0	0	0	0	0	0	0	0	0	0	0	0	0
	HGH	Thru	-	0	-	0	2	2	0	-	0	m	5	100	20
		Right	0	0	0	0	0	0	0	0	0	0	0	0	0
		Start Time	11:00 AM	11:15 AM	11:30 AM	11:45 AM	Total	12:00 PM	12:15 PM	12:30 PM	12:45 PM	Total	Grand Total	Apprch %	Total %

000-

00000 00000

00000

00000

0.0000

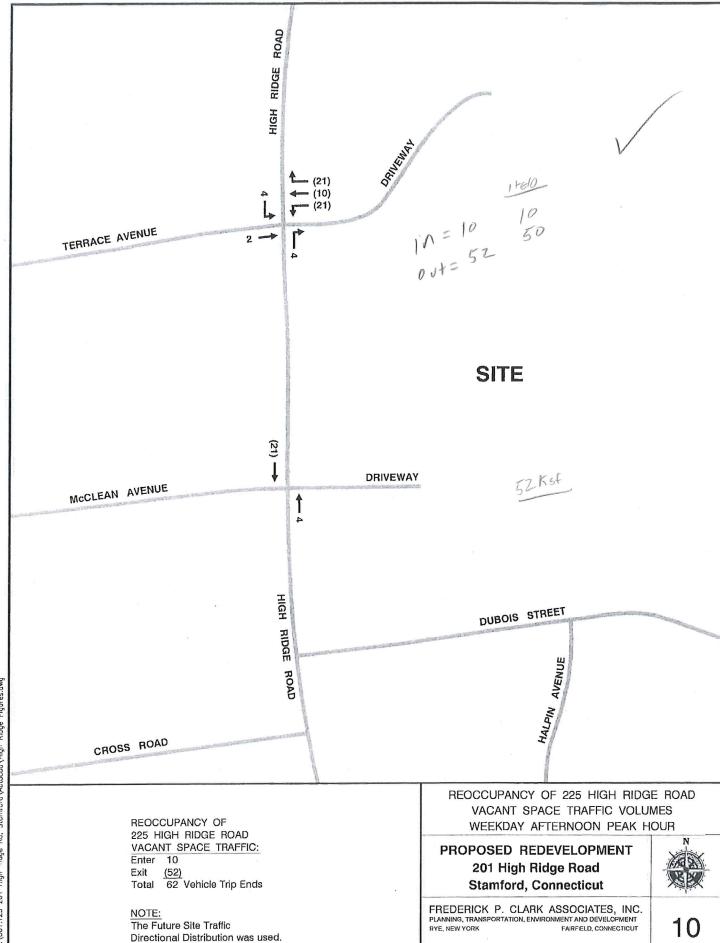
00000

12:00 PM 12:15 PM 12:30 PM 12:45 PM Total

00000 0 0

000

000


Grand Total Apprch % Total %

60000

#	Address	Name	Source	Notes
1	225 High Ridge Road	Goddard School	CTDOT - Traffic Access and Impact Study, Frederick P Clark Associates, Inc, December 2018	
2	3 Cold Spring Road	3 Restaurants	Stamford TTP - estimated	
NOT INC	LUDED 201 High Ridge Road 110 High Ridge Road	Office + Senior Adult Housing Development Whole Foods	CTDOT - Traffic Access and Impact Study, Frederick P Clark Associates, Inc, December 2018 Stamford TTP - estimated	Was open by the time the counts were conducted Will not be open untill Q1 of 2024

File: G:\801.125 201 High Ridge Rd, Stamford\Autocad\High Riage Figures.dwg

Not to Scale

12/4/18

File: G:\801.125 201 High Fidge Rd, Stamford\Autocod\High Ridge Figures.dwg

	Land Use as Listed in ITE ¹	Units ²	(Pea	Weekday PI k Hour of Adja			c)		Saturday (Peak Hour o			
	Land Ose as Listed III II	Onits	PM Rate	In:Out Percentage	ln	Out	Total	PM Rate	In:Out Percentage	In	Out	Total
Back	kground Projects - Cold Spring Road between L	ong Ridge F	Road and Hig	gh Ridge Road								
932	High-Turnover (Sit-Down) Restaurant	7.91 KSF	9.05	0.61 : 0.39	44	28	72	11.19	0.51 : 0.49	45	43	88

Notes:

- 1. Trip Generation, 11th Edition, Institute of Transportation Engineers
- 2. KSF = Thousand Square Feet Gross Floor Area

1 25% (0%)	□ 0% (0%) □ 15% (0%) Oaklawn Ave □ □ 0% (0%) Oaklawn (0%) ○ 0%	(%) % (%) %	0% (0%) - 15% (0%) Oaklawn Ave 7 C %0 (%) (%) (%)	— 40% (0%) — 70% (0%) — 140% (0%) — 140% (0%)	Halpin Ave	— 40% (0%) — 70% (0%) — 140% (0%) — 140% (0%)	□ 0% (0%) □ 0% (0%) North Driveway □ %0 (%0) (%57)
North Driveway (0%) 0%	1 %0 (%51)	E 0% (0%) High Ridge Rd High Ridge Rd	1 %0 (%57) 2 %0 (%57)				

LEGEND

⇔ X (Y) = Inbound (Outbound)

Distribution

1 (11)	0 [0] 7 [7] Oaklawn Ave	(1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Caklawn Ave O [0] 0 [0] 0 [0]	18 (18) (7 0 0) High Ridge Rd	Halbiu Ave	18 [18] 7 0 [0] High Ridge Rd	0 [0] 0 [0] North Driveway [1,1] 0 [0] 0 [0]
North Driveway 0 [0]	0 [0] 4 [6] 1	0 [0] 0 CLOSS BY FIGURE 1 [11]	0 [0] 1 1 [11] 7				

LEGEND

X [Y] = Weekday PM[Saturday MID] Peak Hour Turning Movements

LEVEL OF SERVICE FOR SIGNALIZED INTERSECTIONS (MOTORIZED VEHICLE MODE)

Level of service for signalized intersections is defined in terms of control delay, which is a measure of driver discomfort, frustration, fuel consumption, and increased travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, geometrics, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions: in the absence of traffic control, geometric delay, any incidents, and any other vehicles. Specifically, LOS criteria for traffic signals are stated in terms of the average control delay per vehicle, typically for a 15-min analysis period. Delay is a complex measure and depends on a number of variables, including the quality of progression, the cycle length, the green ratio, and the v/c ratio for the lane group. The criteria are given below.

LEVEL-OF	SERVICE CRITERIA INTERSECTIO MOTORIZED VEHICL	NS
LOS By Volume-	to-Capacity Ratio ¹	
v/c ≤ 1.0	v/c > 1.0	CONTROL DELAY (s/veh)
Α	F	≤ 10
В	F	> 10 AND \le 20
С	F	> 20 AND ≤ 35
D	F	> 35 AND ≤ 55
E	F	> 55 AND ≤ 80
F	F	> 80

¹ For approach-based and intersection-wide assessments, LOS is defined solely by control delay.

Specific descriptions of each LOS for signalized intersections are provided below:

<u>Level of Service A</u> describes operations with a control delay of 10 s/veh and 20 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is exceptionally favorable or the cycle length is very short. If LOS A is the result of favorable progression, most vehicles arrive during the green indication and travel through the intersection without stopping.

Level of Service B describes operations with control delay between 10 and 20 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with LOS A.

<u>Level of Service C</u> describes operations with control delay between 20 and 35 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when progression is favorable or the cycle length is moderate. Individual *cycle failures* (i.e., one or more queued vehicles are not able to depart as a result of insufficient capacity during the cycle) may begin to appear at this level. The number of vehicles stopping is significant, although many vehicles still pass through the intersection without stopping.

Level of Service D describes operations with control delay between 35 and 55 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high and either progression is ineffective or the cycle length is long. Many vehicles stop and individual cycle failures are noticeable.

<u>Level of Service E</u> describes operations with control delay between 55 and 80 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high, progression is unfavorable, and the cycle length is long. Individual cycle failures are frequent.

<u>Level of Service F</u> describes operations with control delay exceeding 80 s/veh or a volume-to-capacity ratio greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is very high, progression is very poor, and the cycle length is long. Most cycles fail to clear the queue.

Reference: <u>Highway Capacity Manual 6</u>, Transportation Research Board, 2016.

LEVEL OF SERVICE FOR TWO-WAY STOP SIGN CONTROLLED INTERSECTIONS

The level of service for a TWSC (two-way stop controlled) intersection is determined by the computed or measured control delay and is defined for each minor movement. Level of service is not defined for the intersection as a whole. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. LOS criteria are given in the Table. LOS criteria are given below:

LEVEL-OF SERVICE CRITER	IA FOR AWSC INTERSECTIONS
LOS¹	CONTROL DELAY (s/veh)
A	≤ 10
В	> 10 AND ≤ 15
С	> 15 AND ≤ 25
D	> 25 AND ≤ 35
E	> 35 AND ≤ 50
F	> 50

Note: LOS criteria apply to each lane on a given approach and to each approach on the minor street.

LOS is not calculated for major-street approaches or for the intersection as a whole.

LOS F is assigned to a movement if the volume-to-capacity ratio exceeds 1.0, regardless of the control delay

Reference: Highway Capacity Manual Version 6.0, Transportation Research Board, 2016.

Sweetspot (111 High Ridge Road) 1: High Ridge Rd & Oaklawn Ave

2023 Background Conditions PM Peak

IOIIS OV

Sweetspot (111 High Ridge Road) 1: High Ridge Rd & Oaklawn Ave

2023 Background Conditions PM Peak

1.0 29.0 29.0 25% 1.0 7.0 7.0 6% 3.0 7.0 17.0 CI+EX SBT 847 847 847 1900 0.95 3610 0.0 NA 123 3610 30 212 4.8 0.97 873 873 123 CI+EX 199 1900 1.00 0.079 0.950 205 0.0 0.0 CI+EX 0.0 D.P+P 0.97 6 0.95 Yes 20.0 29.0 25.2% 25 0 0 25 CI+Ex 1318 1318 1900 0.95 0.99 0.0 30 240 5.5 0.97 1359 1365 ¥ 9096 0 3606 98 98 0.95 S 101 7.0 11.9 33.0 28.7% -10 -10 -10 CI+Ex WBL 287 287 287 287 1900 0.97 0.964 3418 3418 3418 30 290 6.6 0.97 296 397 0.0 CI+EX 0.0 Prot Frt Protected Satt. Flow (prot) Fit Protected Satt. Flow (prot) Fit Permitted Satt. Flow (perm) Right Turn on Red Satt. Flow (RTOR) Link Speed (mph) Link Speed (mph) Link Distance (ft) Flow (vph) Row (vph) Shared Lane Traffic (%) Number of Detectors
Detector Template
Leading Detector (ft)
Trailing Detector (ft)
Detector 1 Position(ft)
Detector 1 Size(ft) Detector 1 Queue (s)
Detector 1 Dalay (s)
Detector 2 Position(f)
Detector 2 Size(f)
Detector 2 Size(f)
Detector 2 Channel
Detector 2 Channel
Detector 2 Extend (s)
Detector 3 Position(f)
Detector 3 Size(ft) Detector 1 Type Detector 1 Channel Detector 1 Extend (s) Lane Group Flow (vph) Detector 3 Extend (s)
Turn Type
Protected Phases
Permitted Phases Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl)
Lane Util. Factor Detector 3 Type Detector 3 Channel Minimum Initial (s)
Minimum Split (s)
Total Split (%) Detector Phase Switch Phase

Lanes, Volumes, Timings Synchro 11 Report SLR Page 1

Silva O strong	\	√	←	4	<u></u>	→ In	8	8	Š	
Lane Group	WBL	WBK	J R	NBK	SBL	SBI		203	24	
Maximum Green (s)	28.1		24.0				13.0	1.0	25.0	
Yellow Time (s)	3.0		4.0				3.0	4.7	4.0	
All-Red Time (s)	1.9		1.0				1.0	1.3	0:0	
Lost Time Adjust (s)	0.0		0.0							
Total Lost Time (s)	4.9		2.0							
Lead/Lag			Lag				Lead	Lead	Lag	
Lead-Lag Optimize?			Yes				Yes	Yes	Yes	
Vehicle Extension (s)	1.0		3.0				1.5	3.0	3.0	
Recall Mode	None		C-Min				Min	Max	None	
Walk Time (s)									7.0	
Flash Dont Walk (s)									18.0	
Pedestrian Calls (#/hr)									10	
Act Effct Green (s)	19.5		7.7		72.8	80.8				
Actuated g/C Ratio	0.17		0.47		0.63	0.70				
v/c Ratio	0.68		0.80		0.59	0.34				
Control Delay	50.5		32.6		24.2	1.3				
Queue Delay	0.4		0.3		1.7	0.1				
Total Delay	50.9		33.0		25.9	1.4				
TOS	۵		ပ		ပ	∢				
Approach Delay	50.9		33.0			6.1				
Approach LOS	۵		ပ			∢				
Queue Length 50th (ft)	143		408		28	7				
Queue Length 95th (ft)	184		#940		129	20				
Internal Link Dist (ft)	210		160			132				
Turn Bay Length (ft)										
Base Capacity (vph)	832		1696		357	2526				
Starvation Cap Reductn	0		0		22	593				
Spillback Cap Reductn	137		62		0	0				
Storage Cap Reductn	0		0		0	0				
Reduced v/c Ratio	0.57		0.84		0.68	0.45				
Intersection Summary										
Area Type:	Other									
Cycle Length: 115										
Actuated Cycle Length: 115										
Offset: 0 (0%), Referenced to phase 2:NBSB, Start of Yellow	to phase 2:N	BSB, Sta	rt of Yello	W						
Natural Cycle: 130										
Control Type: Actuated-Coordinated	ordinated									
Maximum v/c Ratio: 0.93										
Intersection Signal Delay: 25.3	5.3			Inte	Intersection LOS: C	LOS: C				
Intersection Capacity Utilization 70.5%	tion 70.5%			ಠ	Level of	CU Level of Service C	0			
Annah man Daniah (main) 45										

Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cydes.

Splits and Phases: 1: High Ridge Rd & Oaklawn Ave

17s 01 4F 4 02 (R) 4 5 29s

17s 29s

Lanes, Volumes, Timings

SLR

Sweetspot (111 High Ridge Road) 2: Halpin Ave & Oaklawn Ave

2023 Background Conditions PM Peak

rs EBL (100) (1	1900 1900 1.00 0	0 0 1900 1.00 0	WBT 314 314 314 1900 1.00 1.00 1.00 1.00 1.00 1.00 1.00	WBR 6 6 11900 1.00	21 21 1900 1.00	3 3 3 4 4 4 1.00 1.00	NBR 436	SBL	SBT	SBR
ns 0 0 (hr) 0 0 0 0 1.00 1.00 0 0 0 0 0 0 0 0 0 0 0	190	1.00	314 314 314 1900 1.00 0.998	1.00	21 21 1900 1.00	3 3 1900 1.00	436	u	\$ °	
(h)	130	1.00	314 314 1900 1.00 0.998	1900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1300 1900 1.00	1900	436	u	<	
0 (40 1900 1.00 0	190	1.00	314 1900 1.00 0.998 1896	1900	1300	1900		ဂ	>	က
1900		1.00	1.00	1.00	1.00	1.00	436	22	0	က
1.00		0 1.00	1.00	0 0	00.	1:00	1900	1900	1900	1900
0		0	1896	0	c		1.00	1.00	1.00	1.00
0		0	1896	0	d					
0		0	1896	0	c	0.872			0.949	
0		0	1896	0	c	0.998			0.970	
			0007		0	1653	0	0	1749	0
			000			0.998			0.970	
Satd. Flow (perm) 0 1900		0	1830	0	0	1653	0	0	1749	0
Link Speed (mph) 30			8			30			30	
Link Distance (ft) 290			240			230			214	
Travel Time (s) 6.6			5.5			5.2			4.9	
Confl. Peds. (#/hr) 4	τ-	τ-		4	-		5	7		_
Peak Hour Factor 0.96 0.96	96:0	96:0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	0.96
Adj. Flow (vph) 0 213	0	0	327	9	22	က	454	2	0	က
Shared Lane Traffic (%)										
Lane Group Flow (vph) 0 213	0	0	333	0	0	479	0	0	œ	0
Sign Control Free			Free			Stop			Stop	
Intersection Summary										
Area Type: Other										
Control Type: Unsignalized										
Intersection Capacity Utilization 51.8%		JO	ICU Level of Service A	Service A	_					
Analysis Period (min) 15										

Lanes, Volumes, Timings S.R.

Synchro 11 Report Page 3

Sweetspot (111 High Ridge Road) 2: Halpin Ave & Oaklawn Ave

2023 Background Conditions PM Peak

Movement Lane Configurations	EBL	EBT		IQ/VI	TQ/V	WBR	N N	FOI	1				
Lane Configurations			רוחו	WBL			ייי	- QN	NBR	SBL	SBT	SBR	
Traffic Vol veh/h		÷			43			4			4		
- Co. 60		204	0	0	314	9	21	က	436	2	0	က	
Future Vol, veh/h	0	204	0	0	314	9	51	က	436	2	0	က	
Conflicting Peds, #/hr	4	0	_	_	0	4	~	0	7	2	0	-	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized		÷	None	1	1	None			None			None	
Storage Length		٠		٠	•	•	•		•		•		
Veh in Median Storage, #	- #	0	٠	٠	0	٠	٠	0	٠	٠	0		
Grade, %		0	٠	٠	0	•	•	0	•	•	0		
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0	
Mvmt Flow		213	0	0	327	9	22	က	454	2	0	က	
Major/Minor M.	Major1		2	Major2		2	Minor1		2	Minor2			
Conflicting Flow All	337	0	١.			0	546	220	215	778	547	335	
Stage 1		÷	٠	1	1	1	213	213	1	334	334		
Stage 2		٠	٠	٠	٠	٠	333	337	٠	444	213		
Critical Hdwy	4.1	٠	٠	٠	٠	٠	7.1	6.5	6.2	7.1	6.5	6.2	
Critical Hdwy Stg 1	,	٠	•	•	•	'	6.1	5.5	'	6.1	5.5		
Critical Hdwy Stg 2	ì	٠	1	1	1	1	6.1	5.5	1	6.1	5.5		
Follow-up Hdwy	2.2	٠	•	•	•	•	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	1234	÷	0	0	1	1	452	446	830	316	447	712	
Stage 1		٠	0	0	٠	٠	794	730	٠	684	647		
Stage 2		٠	0	0	1	•	685	645	•	262	730		
Platoon blocked, %		٠			٠	١							
Mov Cap-1 Maneuver	1229	٠	٠	٠	1	•	420	444	828	141	445	709	
Mov Cap-2 Maneuver	·	٠	٠	٠	٠	٠	420	444	٠	141	445		
Stage 1	·	٠	•	•	1	•	794	730	•	681	644		
Stage 2		٠	٠	٠	•	•	68	642	•	268	730		
Approach	EB			WB			æ			SB			
HCM Control Delay, s	0			0			16.2			23.6			
HCM LOS							ပ			ပ			
Minor Lane/Major Mvmt	NB	NBLn1	EBL	EBT	WBT	WBR SBLn1	BLn1						
Capacity (veh/h)		793	1229	٠	•	٠	202						
HCM Lane V/C Ratio	Ö	0.604		٠	٠	٠	- 0.041						
HCM Control Delay (s)	_	16.2	0	1	1	•	23.6						
HCM Lane LOS		ပ	⋖	٠	٠	٠	ပ						
HCM 95th %tile Q(veh)		4.1	0	٠	•	1	0.1						

HCM 6th TWSC Synchro 11 Report SLR

2023 Background Conditions PM Peak Sweetspot (111 High Ridge Road) 3: High Ridge Rd & Halpin Ave

		١.	١.		۱.	-	
	/	1	—	•	۶	-	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations			₹			444	
Traffic Volume (vph)	0	0	1341	326	8	1036	
Future Volume (vph)	0	0	1341	326	8	1036	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	0		0	75		
Storage Lanes	0	0		0	-		
Taper Length (ft)	52				22		
Lane Util. Factor	1.00	1.00	0.95	0.95	0.91	0.91	
Fr			0.971				
Flt Protected						966.0	
Satd. Flow (prot)	0	0	3505	0	0	5166	
Flt Permitted						966.0	
Satd. Flow (perm)	0	0	3505	0	0	5166	
Link Speed (mph)	30		8			30	
Link Distance (ft)	187		292			394	
Travel Time (s)	4.3		9.9			0.6	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Adj. Flow (vph)	0	0	1382	336	8	1068	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	0	1718	0	0	1152	
Sign Control	Stop		Free			Free	
Intersection Summary							
Area Type: Other	Jer						
Control Type: Unsignalized							
Intersection Capacity Utilization 75.8%	n 75.8%			ರ	J Level or	ICU Level of Service D	
Analysis Period (min) 15							

Synchro 11 Report Page 5

Lanes, Volumes, Timings SLR

Sweetspot (11.4: High Ridge F

2023 Background Conditions	PM Peak	
(111 High Kidge Koad)	ge Rd & N Driveway	

	\	1	—	•	۶	→	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	X -		4₽			444	
Traffic Volume (vph)	ည	10	1314	16	13	1121	
Future Volume (vph)	22	10	1314	16	13	1121	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	0		0	100		
Storage Lanes	_	0		0	_		
Taper Length (ft)	52				22		
Lane Util. Factor	1.00	1.00	0.95	0.95	0.91	0.91	
Fr	0.910		0.998				
Fit Protected	0.984					0.999	
Satd. Flow (prot)	1701	0	3603	0	0	5182	
Flt Permitted	0.984					0.999	
Satd. Flow (perm)	1701	0	3603	0	0	5182	
Link Speed (mph)	ဣ		30			30	
Link Distance (ft)	145		228			240	
Travel Time (s)	3.3		5.2			5.5	
Peak Hour Factor	96.0	96.0	96.0	96.0	96.0	96:0	
Adj. Flow (vph)	2	10	1369	17	14	1168	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	15	0	1386	0	0	1182	
Sign Control	Stop		Free			Free	
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization 46.8%	ition 46.8%			೨	U Level o	ICU Level of Service A	
Analysis Period (min) 15							

Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 4: High Ridge Rd & N Driveway

Intersection							
Int Delay, s/veh	0.4						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	>		₹			₽₩₩	
Traffic Vol, veh/h	2	9	1314	16	13	1121	
Future Vol, veh/h	2	9	1314	16	13	1121	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	1	None	1	None	1	None	
Storage Length		•	•	•	100		
Veh in Median Storage, #	0 #,	1	0	•	1	0	
Grade, %	0	•	0	•	•	0	
Peak Hour Factor	96	ගු ර	96	8	96	ගු ර	
neavy verilicies, 76 Mvmt Flow	0 10	9 0	1369	1	4	1168	
Major/Minor N	Minor1	_	Major1	2	Major2		
Conflicting Flow All	1873	693	0	0	1386	0	
Stage 1	1378	•	•	•	٠		
Stage 2	495	٠	•	٠	٠		
Critical Hdwy	6.25	6.9	1	1	4.1	ì	
Critical Hdwy Stg 1	2.8	•	•	٠	٠		
Critical Hdwy Stg 2	9	1	1	•		٠	
Follow-up Hdwy	3.65	3.3	1	۱	7.7	٠	
Pot Cap-1 Maneuver	82	330	1	•	200		
Stage 1	199	•	•	٠	٠		
Stage 2	220	1	1	•	1		
Platoon blocked, %			1	١			
Mov Cap-1 Maneuver	8 i	330	•	•	200		
Mov Cap-2 Maneuver	8 5	1	1	•	١	٠	
Stage 1	199	•	•	•	•		
Stage 2	206	1	1	٠	٠		
Approach	WB		æ		SB		
HCM Control Delay, s HCM LOS	28.8 D		0		0.4		
Minor Lane/Major Mvmt	ţ	NBT	NBRV	NBRWBLn1	SBL	SBT	
Capacity (veh/h)		•	1		200		
HCM Lane V/C Ratio		•	•		0.027		
HCM Control Delay (s)		1	•	28.8	12.4	0.3	
HCM Lane LOS		٠	٠	□	ш	⋖	
(1 - 1) O - 12 / O - 12 O V O - 1							

HCM 6th TWSC Synchro 11 Report SLR Page 7

Sweetspot (111 High Ridge Road) 6: Halpin Ave & N Driveway

2023 Background Conditions

2023 Background Conditions PM Peak

→	SBT SBR		0 0	0 0	1900 1900	1.00 1.00				0 0		0 0	30	230	5.2	_	0.91 0.91	0 0		0 0	Stop			ICU Level of Service A
•	NBT	4	393	393	1900	1.00			0.999	1898	0.999	1898	30	358	8.1		0.91	432		443	Free			ICN
•	NBL		10	10	1900	1.00				0		0				-	0.91	7		0				
<i>></i>	EBR		0	0	1900	1.00				0		0				~	0.91	0		0				
4	EBL	je.	19	19	1900	1.00			0.950	1805	0.950	1805	30	134	3.0		0.91	21		21	Stop		Other	rd zation 38.2%
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Ideal Flow (vphpl)	Lane Util. Factor	Ped Bike Factor	Ë	Fit Protected	Satd. Flow (prot)	Fit Permitted	Satd. Flow (perm)	Link Speed (mph)	Link Distance (ft)	Travel Time (s)	Confl. Peds. (#/hr)	Peak Hour Factor	Adj. Flow (vph)	Shared Lane Traffic (%)	Lane Group Flow (vph)	Sign Control	Intersection Summary	Area Type:	Control Type: Unsignalized Intersection Capacity Utilization 38.2%

Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 6: Halpin Ave & N Driveway

Lane Configurations 7 Traffic Vol. veh/h 19 Future Vol. veh/h 19 Conflicting Peds. #hrr 0 Sign Confrol Siop S RT Charnelized - N Storage Length 0 Veh in Median Storage. # 0 Grade, % 11 432

Peak Hour Factor Heavy Vehicles, % Mvmt Flow 0

455 1 454 6.4

Major/Minor Conflicting Flow All Stage 1 Stage 2

- 4.1

- 2.2 0 1635

Critical Hdwy Stg 1 - Critical Hdwy Stg 2 5.4 Critical Hdwy Stg 2 5.4 Pollowup Hdwy 3.5 Pot Cap-I Maneuver 567 Stage 1 - Stage 2 644 Platoon blocked, %

- 1633

. .

Mov Cap-1 Maneuver 561 Mov Cap-2 Maneuver 561 Stage 1 - Stage 2 643 0.2

Approach EB HCM Control Delay, s 11.7 HCM LOS B

EBL EBR NBL NBT SBT

Intersection Int Delay, s/veh

2023 Background Conditions PM Peak

Sweetspot (111 High Ridge Road) 8: High Ridge Rd & Cross Rd

2023 Background Conditions PM Peak

	904																																																	
	Ø2																																																	
	Ø1																																																	
•	SBR		4	4	1900	100	0		0.91				0		0	Yes					_	0.00	4		0																									
→	SBT	444	980	980	1900				0.91	1.00	0.999		5181		5181			30	300	8.2		0.90	1089		1093	~		22	0	0	22	CI+Ex		0.0	0.0	0:0														
•	NBT	₩.₽	1413	1413	1900				0.95	1.00			3610	0.954	3444			30	717	4.8		0.90	1570		1572	0		0	0	0	9	CI+EX		0.0	0.0	0.0														
•	NBL		2	2	1900	0	0	25	0.95				0		0						_	0.30	2		0	~	Left	20	0	0	20	CI+EX		0.0	0.0	0.0														
<i>></i>	EBR		99	99	1900	0	0		1.00				0		0	Yes						0.30	73		0																									
4	EBL	>	14	14	1900	0	_	52	1.00		0.889	0.991	1674	0.991	1674	C I	2	8	409	6		0.90	16		88	4		320	φ	φ	9	CI+EX		0.0	0.0	0.0	9	9	CHEX		0.0	18	9	CI+EX		0.0	314	9	CHE CHE	
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Ideal Flow (vphpl)	Storage Length (ft)	Storage Lanes	Taper Length (ft)	Lane Util. Factor	Ped Bike Factor	芷	Flt Protected	Satd. Flow (prot)	Flt Permitted	Satd. Flow (perm)	Right Turn on Red	Satd. Flow (KI UK)	Link Speed (mph)	LINK DISTANCE (T)	Travel Time (s)	Confl. Peds. (#/hr)	Peak Hour Factor	Adj. Flow (vph)	Shared Lane Traffic (%)	Lane Group Flow (vph)	Number of Detectors	Detector Template	Leading Detector (ft)	Trailing Detector (ft)	Detector 1 Position(ft)	Detector 1 Size(ft)	Detector 1 Type	Detector 1 Channel	Detector 1 Extend (s)	Detector 1 Queue (s)	Detector 1 Delay (s)	Detector 2 Position(ft)	Detector 2 Size(ft)	Detector 2 Type	Detector 2 Channel	Detector 2 Extend (s)	Detector 3 Position(ft)	Detector 3 Size(ft)	Detector 3 Type	Detector 3 Channel	Detector 3 Extend (s)	Detector 4 Position(ft)	Detector 4 Size(ft)	Detector 4 Type	Detector 4 Channel

Synchro 11 Report Page 9

HCM 6th TWSC SLR

1633 - 561 0.007 - 0.037 7.2 0 11.7 A A B 0 - 0.1

Minor LaneMajor Murnt Capadity (vehh) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM Lane LOS Lanes, Volumes, Timings SLR

2023 Background Conditions PM Peak Sweetspot (111 High Ridge Road) 8: High Ridge Rd & Cross Rd

Part Color Par	BL EBR NBL NBT SBT SBR Ø1 Ø2 100 101 102 103 104 105 105 105 105 105 105 105	Figure Feb. Nel. Nel. Set											
First end (s)	First First (s)	First First (s)	ine Group		88	NBL	NBT	SBT	SBR	Ø	Ø2	94	
Prot custom NA	Prot custom NA	Prot custom NA	etector 4 Extend (s)	0:0									
Phases 5 3 23 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Phases 5 3 23 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Phases 5 3 23 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	ırn Type	Prot	ರ	stom	Α	A					
Phases 5 3 2 12 Phases 5 3 2 3 12 Phases 5 3 2 12 Phase 5 3 2 12 Phase 6 1 10 Solf (s) 11:9 7.0 7.0 20.0 Solf (s) 11:9 7.0 7.0 20.0 Refs 5 28.1 1.0 7.0 28.0 Refs 6 1.8 1.0 1.3 1.0 1.0 Adjust (s) 1.9 1.3 1.0 1.0 Adjust (s) 1.0 1.3 1.0 1.0 Adjust (s) 1.0 1.0 1.	Phases 5 3 2 3 12 Phases 5 3 2 3 12 Phases 5 3 2 12 Phases 1 20 Split (s) 11:9 7:0 7:0 29:0 Split (s) 28.7% 6.1% 17:0 29:0 Split (s) 28.7% 6.1% 15:0 Split (s) 28.7% 6.1% 15:0 Split (s) 28.7% 6.1% 15:0 Adjust (s) 19 13 13:0 4.0 Adjust (s) 10 3.0 4.7 3.0 Adjust (s) 10 3.0 4.7 3.0 Adjust (s) 10 3.0 4.7 3.0 Adjust (s) 10 3.0 4.0 Adjust (s) 10 0.0 Adjust (s) 10 0	Phases 5 3 2 3 12 Phases 5 3 2 3 12 Phases 5 3 2 12 Spli(s) 113 7.0 7.0 20.0 Spli(s) 113 7.0 170 28.0 I (%) 28.7% 6.1% 170 28.0 I (%) 28.7% 6.1% 170 28.0 I (%) 28.1% 1.0 170 28.0 Adjust(s) 0.0 1 1.3 1.0 1.0 Adjust(s) 0.0 1.3 1.0 1.0 1.0 Adjust(s) 0.0 1.3 1.0 1.0 Adjust(s) 0.0 1.	otected Phases	2		က	23	12		-	2	4	
Phase 5 3 23 12 Initial (s) 7.0 1.0 3.0 15.0 Split (s) 11.9 7.0 7.0 20.0 (ts) 28.7% 6.1% 15% 25% Green (s) 28.1 1.0 1.0 130 24.0 Ine (s) 3.0 4.7 1.0 1.0 1.0 Ine (s) 1.9 1.3 1.0 1.0 1.0 Adjust(s) 0.0 1.1 1.2 4 Boley 13.8 21.1 12.4 Deley 13.8 21.1 12.4 Ingh 50h (th 10 62 104 Ingh 50h (th 10 62 104 Ingh 50h (th 10 62 104 Ingh 50h (th 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Phase 5 3 23 12 Initial (s) 7.0 1.0 3.0 15.0 Split (s) 11.9 7.0 7.0 20.0 (r) 28.10 7.0 1.0 3.0 17.0 20.0 (r) 28.10 7.0 1.0 7.0 7.0 20.0 (r) 3.3.0 1.2 7.0 1.0 1.0 1.0 Ine (s) 3.0 4.7 1.9 1.0 1.0 Ine (s) 1.9 1.3 1.0 1.0 1.0 Ine (s) 1.9 1.0 1.0 1.0 Ine (s) 1.0 1.0 1.0 1.0 Ine (s) 1.0 1.0 1.0 1.0 Ine (s) 1.0 1.0 1.0 1.0 1.0 Ine (s) 1.0 1.0 1.0 1.0 1.0 1.0 Ine (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Ine (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Ine (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Ine (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Ine (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Ine (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Ine (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Ine (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Ine (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Phase 5 3 23 12 Phase 6 5 3 23 12 Split (s) 7.0 1.0 20.0 Split (s) 7.0 1.0 3.0 15.0 Split (s) 11.9 7.0 7.0 7.0 20.0 (ts) 28.7% 6.1% 15% 25% Green (s) 28.1 1.0 1.0 130 24.0 me (s) 3.0 4.7 1.0 1.0 1.0 me (s) 3.0 4.7 1.0 1.0 1.0 Adjust (s) 0.0 0.0 1.5 3.0 4.0 me (s) 1.9 1.3 1.0 1.0 1.0 1.0 Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	smitted Phases			7							
Spin	Spin (spin	Spin	stector Phase	2		က	23	12					
Section 1.0	Section 1.0	Section 1.0	vitch Phase										
Sylit (s) 11.9 7.0 7.0 20.0 (r) (s) 33.0 1.19 7.0 7.0 20.0 (r) (s) 33.0 1.0 7.0 17.0 20.0 (r) (s) 33.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	Sylit (s) 11.9 7.0 7.0 20.0 Sylit (s) 11.9 7.0 7.0 20.0 (r/s) 33.0 7.0 7.0 7.0 20.0 (r/s) 33.0 7.0 7.0 7.0 20.0 (r/s) 33.0 7.0 1.0 7.0 7.0 7.0 20.0 (r/s) 28.1 7.0 28.1 7.0 28.0 7.0 7.0 24.0 7.0 7.0 24.0 7.0 7.0 24.0 7.0 7.0 24.0 24.0 7.0	Sylit (s) 11.9 7.0 7.0 20.0 Sylit (s) 11.9 7.0 7.0 7.0 20.0 Sylit (s) 33.0 7.0 7.0 7.0 20.0 Sylit (s) 33.0 7.0 7.0 7.0 7.0 20.0 Sylit (s) 28.1 7.0 28.1 7.0 28.0 3.0 4.0 Test (s) 28.1 7.0 28.0 7.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	nimum Initial (s)	2.0		1.0				3.0	12.0	1.0	
(\$\(\(\(\(\(\(\text{fig}\)\)) \) 33.0 \) 7.0 \) 17.0 \) 29.0 \\ \(\(\(\(\(\text{fig}\)\)) \) 28.7% \) 6.1% \) 6.1% \\ \(\(\(\(\text{fig}\)\) \) 28.7 \\ \(\(\(\text{fig}\)\) \) 3.0 \\ \(\(\(\text{fig}\)\) \) 1.0 \\ \(\(\(\text{fig}\)\) \) 1.3 \\ \(\(\text{fig}\)\) \) 1.0 \\ \(\(\text{fig}\)\) 1.1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(\$(*) 33.0 7.0 17.0 29.0 17.0 29.0 17.0 29.0 17.0 29.0 17.0 29.7 (\$(*) 29.7 (\$(*) 5.1 % 29.	(\$(*) 330 70 170 290 170 170 170 170 170 170 170 170 170 17	nimum Split (s)	11.9		7.0				7.0	20.0	29.0	
(%) 28.7% 6.1% 15% 25% (eeet (s) 2.8.1 1.0 1.0 3.0 4.0 me (s) 3.0 4.7 3.0 4.0 Adjust (s) 0.0 1.3 4.0 1.0	(%) 28.7% 6.1% 15% 25% (%) 28.1 1.0 1.0 3.0 4.0 ne (s) 3.0 4.7 3.0 4.0 me (s) 1.9 1.3 4.0 1.0	(%) 28.7% 6.1% 15% 25% (eeer (s) 2.8.1 1.0 1.0 3.0 4.1 ne (s) 3.0 4.7 3.0 4.0 Adjust (s) 1.9 1.3 1.0	tal Split (s)	33.0		7.0				17.0	29.0	29.0	
Green (s) 28.1 1.0 130 24.0 me (s) 3.0 4.7 3.0 4.0 me (s) 1.9 1.3 1.0 1.0 1.0 me (s) 24.0 me (s) 2.0 4.7 3.0 4.0 me (s) 2.0 4.9 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Green (s) 28.1 1.0 130 24.0 me (s) 3.0 4.7 3.0 4.0 me (s) 1.9 1.3 1.0 1.0 1.0 me (s) 24.0 me (s) 2.0 4.7 3.0 4.0 me (s) 2.0 1.9 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Green (s) 28.1 1.0 130 24.0 me (s) 3.0 4.7 3.0 4.0 me (s) 1.9 1.3 1.0 1.0 1.0 me (s) 24.0 me (s) 2.0 4.7 3.0 4.0 me (s) 2.0 1.9 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	tal Split (%)	28.7%		6.1%				15%	25%	25%	
New State	New State	New State	aximum Green (s)	28.1		1.0				13.0	24.0	25.0	
Adjust(s) 1.9 1.3 1.0 1.0 Adjust(s) 0.0 Adjust	Adjust 1.9 1.3 1.0 1.0 Adjust 5 0.0 Adjust 6 0.0 Adjust 6 0.0 Colimizer 4.9 Colimizer 766 Colimizer 766 Colimizer 766 Colimizer 766 Colimizer 766 Colimizer 766 Colimizer 767 Colimizer 766 Colimi	Adjust 1.9 1.3 1.0 1.0 Adjust 5 0.0 Adjust 6 0.0 Adjust 6 0.0 Colimizer 4.9 Colimizer 768 768 768 768 Advisor 6 0.0 Adjust 7 0.0	llow Time (s)	3.0		4.7				3.0	4.0	4.0	
Adjust (s) 0.0	Adjust (s) 0.0 Holiust (s) 0.0 Chime (s) Lead Ves Yees Yee	Adjust (s) 0.0 Holiust (s) 0.0 I'me (s) 4.9 Lead Ves Yees Yee	-Red Time (s)	1.9		ر د:				1.0	1.0	0.0	
Time (s) 4.9 Lead	Time (s) 4.9 Lead	Time (s) 4.9 Lead	st Time Adjust (s)	0.0									
Optimizer Lead Vees Yes Yes <td>Optimizer Lead Ms Yes Yes</td> <td>Optimizer Lead Ms Yes Yes</td> <td>tal Lost Time (s)</td> <td>4.9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Optimizer Lead Ms Yes	Optimizer Lead Ms Yes	tal Lost Time (s)	4.9									
Optimize? Yes Y	Optimize? Yes Y	Optimize? Yes Y	ad/Lag			Lead				Lead	Lag	Lag	
Attansion (s) 1.0 3.0 1.5 3.0 Annother (s) 1.0 1.7 1.2 4 Annother (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	xterision (s) 1.0 3.0 1.5 3.0 dde (s) None Max Min C-Min N at Walk (s) Anne Min C-Min N Anne Anne Anne Anne Anne Anne Anne Anne C-Min N Anne Anne C-Min N Anne	Attension (s) 1.0 3.0 1.5 3.0 dee Attension (s) 1.0 1.7 1.2 dee Attension (s) 1.1 1.2 dee A	ad-Lag Optimize?			Yes				Yes	Yes	Yes	
All Mone Max Min C-Min All Max Min C-Min All Min (S) **Number (S) **Nu	All Mone Max Min C-Min All Max Min C-Min All Min (S) 1 (S	de None Max Min C-Min All Min (1985) 19 (s)	hicle Extension (s)	1.0		3.0				1.5	3.0	3.0	
in the Mark (s)	a (s) Intrivuence (s)	e (s) IntWalk (s) Torcalls (#Hr) Torcalls (scall Mode	None		Max				W	C-Min	None	
11 (Walk (s)) 10 Calls (#ftr) 19.5 56.1 73.8 90 C Ratio 0.17 0.49 0.64 90 C Ratio 0.26 0.93 0.33 elay 13.8 21.1 12.4 13.8 21.1 12.4 13.8 21.1 12.4 13.8 21.1 12.4 10.5 B C B C B 10.5 B C B 10.5 C B C B 10.5 C B C C B C C B 10.5 C B C C B C C B 10.5 C B C C C B C C B 10.5 C B C C C B C C C B 10.5 C B C C C B C C C B 10.5 C B C C C B C C C B 10.5 C B C C C B C C C B 10.5 C B C C C B C C C B 10.5 C B C C C B C C C B C C C B 10.5 C B C C C B C C C C B C C C C B 10.5 C B C C C C B C C C C C C C C C C C C	11 (Walk (s)) 10 Calls (#fh") 19.5 56.1 73.8 19.6 Ratio 0.17 0.49 0.64 19.6 Ratio 0.26 0.93 0.33 19.8 21.1 12.4 19.8 21.1 12.4 19.9 C Ratio 0.00 19.0 0.00 1	11 (Walk (s)) 10 Calls (#ftr) 19.5 56.1 73.8 3 Deen (s) 0.37 0.49 0.64 9 C Ratio 0.77 0.49 0.64 10.26 0.26 0.93 0.33 10.3 0.00 10.3 0.00 10.4 13.8 21.1 12.4 10.8 E C B 10.9 E B	alk Time (s)									7.0	
Section 19.5	an Calls (#Tr) Seen (s)	an Calls (#Try) Siene (s) Siene	ash Dont Walk (s)									18.0	
Second Control	Section 19.5	19.5 19.5	destrian Calls (#/hr)									10	
giC Ratio 0.17 0.49 giC Ratio 0.26 0.93 giC Ratio 0.26 0.93 giC Ratio 0.26 0.93 gids 13.8 21.1 LOS B 2.1 ngth 50th (1) 10 62 ngth 50th (1) 10 62 ngth 329 132 cap Reductin 0 0 cap Reductin 0 0 cap Reductin 0 0 vic Ratio 0.19 0.93 vic Ratio 0.19 0.93 gight 115 six Other Six Oth	giC Ratio 0.17 0.49 giC Ratio 0.26 0.93 giC Ratio 0.26 0.93 giC Ratio 0.26 0.93 gid Ratio 0.27 0.49 gid Ratio 0.17 0.49 gid Ratio 0.17 0.49 gid Ratio 0.17 0.49 gid Ratio 0.19 0.93 gid Ratio 0.19 gid Ratio 0	giC Ratio 0.17 0.39 (1948) giC Ratio 0.26 0.39 (1948) elay 13.8 21.1 (1948) belay 13.8 21.1 (1948) LOS B C C C C C C C C C C C C C C C C C C	+ Effet Green (s)	19.5			56.1	73.8				2	
elay 13.8 21.1 yy 13.8 21.1 Delay 13.8 21.1 Delay 13.8 21.1 Conghi 50th (if) 10 62 might 50th (if) 51 #1005 nr Dist(it) 329 132 congh 95th (it) 51 #1005 nr Dist(it) 329 132 congh 95th (it) 61 #1005 nr Dist(it) 329 132 congh 95th (it) 61 #1005 nr Dist(it) 329 132 congh 95th (it) 60 62 nr Dist(it) 329 132 congh 65th (it) 60 62 nr Dist(it) 329 132 congh 65th (it) 60 62 nr Dist(it) 329 132 congh 65th (it) 60 62 nr Dist(it) 60 63 nr Summary 0ther pr Summary 0ther congh 75th (it) 60 63 nr Summary 0ther congh 65th (it) 65th (it	eley 138 211 yy 138 211 boley 138 211 Doeley 138 211 Doeley 138 211 Color 138 211 Color 138 211 Color 140 Color 1	elay 13.8 21.1 yy 13.8 21.1 Doelay 13.8 21.1 Doelay 13.8 21.1 Con Pedicit 13.8 21.1 Cap Reductin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	triated o/C Ratio	0.17			0.49	0.64					
leay 13.8 21.1 Selay 13.8 21.1 Delay 13.8 21.1 LOS B C C Total 13.8 21.1 LOS B C C Total 13.8 21.1 LOS B C C Total 13.8 21.1 Cap Reduct 0 Cap Redu	elay 13.8 21.1 by 13.8 21.1 Delay 13.8 21.1 Delay 13.8 21.1 LOS B C C Cancer 13.8 21.1 Los B C C Cancer 13.8 21.1 Cap Reduct 10 0 0 Cap Reduct 1 0 0 Cap Reduct 0 0 Cap Reduct 0 0.19 0.33 We Ratio Chier Summary Cap Reduct 0.019 0.33 We Ratio Chier Cap Reduct 0.019 0.33 We Ratio 0.019 0.33 We Ratio 0.019 0.33 We Ratio Chier Chier 100 Chier	elay 13.8 21.1 bay 13.8 21.1 Delay 13.8 21.1 LOS B C C Constitution of the constit	Ratio	0.26			0 03	33					
0.0 0.0 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.2	0.0 0.0 0.0 1.3 8 21.1 8 21.1 8 21.1 8 21.1 8 21.1 1.0 6.2 1.1 1.0 6.2 1.1 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 1.3 2.1.1 1.3 2.1.1 1.3 2.0 1.1 1.3 2.0 1.1 1.3 2.0 1.1 1.3 2.0 1.1 1.3 2.0 1.1 1.3 2.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	ontrol Delay	13.8			21.1	12.4					
13.8 21.1 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.1	13.8 21.1 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.2	13.8 21.1 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.2	neue Delay	0.0			0.0	0.0					
B C C 11 13.8 21.1 14.0	13.8 21.1 1.0	B C C 11 13.8 21.1 14.0	tal Delav	13.8			21.1	12.4					
13.8 21.1 1.2	13.8 21.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13.8 21.1 1	, S(Ω			O	മ					
10 62 62 62 62 62 62 62 62 62 62 62 62 62	B C C 10 #1005 23 23 464 1683 3 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 62 62 62 63 7329 1329 1329 1329 1329 1329 1329 1329 1	proach Delay	13.8			21.1	12.4					
10 62 51 #1005 329 132 464 1683 3 464 1683 3 0 0 0 0 0 0 0 0 0 0 0 0 0	10 62 51 #1005 329 132 464 1683 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 033 (d) 115 Condinated	10 62 51 #1005 329 132 464 1683 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 093 (4)	proach LOS	<u> </u>			C	<u>a</u>					
51 #1005 329 112 464 1683 3 0	51 #1005 329 132 464 1683 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	51 #1005 329 112 464 1683 3 0 0 0 0 0 0 0 0 0 0.93 (Other Condinated	Jene Lenath 50th (ft)	10			62	4					
329 132 464 1683 3 0 0 0 0 0 0 0.19 0.93 1 Other 115	329 132 464 1683 3 0 0 0 0 0.19 0.93 1 Other Onordinated	329 132 464 1683 3 0 0 0 0 0.19 0.93 1 Other Chordinated	leue Lenath 95th (ft)	21		74	#1005	276					
464 1683 0 0 0 0 0.19 0.33 Other T15	464 1683 0 0 0 0 0.19 0.33 Other H15 ed to phase 2.NBSB, Start of Yellow	464 1683 0 0 0 0 0.19 0.33 Other A115 Coordinated	emal Link Dist (ft)	329			132	280					
464 1683 0 0 0 0 0 0 0 0 0 0.19 0.93 Other Control of Pellow	464 1683 0 0 0 0 0 0 0 0 0 0 0.19 0.33 Other 115 Condinated	464 1683 0 0 0 0 0 0 0 0 0 0 0 0.19 0.93 Other 115 Coordinated	rn Bay Length (ft)										
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	se Capacity (vph)	464			1683	3310					
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0.19 0.93 0. Other 115 ced to phase 2:NBSB, Start of Yellow	1 0 0 0.19 0.93 0.00 0.19 0.93 0.00 0.19 0.93 0.00 0.19 0.93 0.00 0.19 0.93 0.00 0.00	arvation Cap Reductn	0			C	C					
Deduction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Retriction Retriction Retriction Summary Other Active Referenced to phase 2.NBSB, Start of Yellow Retrieved to phase 2.NBSB, Start of Yellow Retrieved to phase 2.NBSB, Start of Yellow Retriansic Concrinated Retriansic Concrinated Retriansic Concrinated Retriansic Concrinated	Reduction 0 0 2. Ratio 0.19 0.93 0.83 2. Summary Other 0.19 0.93 0.93 0.93 ht. 145 Acid Length: 115 Acid Length: 115 Acid Length: 115 Acid Length: 116 Acid Length: 117 Acid Length: 118 Acid Length:	illback Cap Reductn	· —			0	30					
Summary 0.19 0.93 Summary Other 1.15 ii. 115 iii. 130 iii. 130 iii. 130 iii. 130 iii. 130 iii. 130	Ratio Summary Cither th: 115 // Referenced to phase 2:NBSB, Start of Yellow is: 130	5 Ratio 0.19 0.93 Summary Other 11.15 (7cle Length: 115 //s), Referenced to phase 2:NBSB, Start of Yellow 22. Architected Coordinated 23. Action of Parameter Coordinated	prage Can Reductin	. С			0	C					
Summary Other h: 115 //de Length: 115 %), Referenced to phase 2:NBSB, Start of Yellow Antichal Coordinated	Summary Other n: 115 rde Length: 115 %). Referenced to phase 2:NBSB, Start of Yellow ie: 130 P. Achtaned-Coordinated	Summary Other h: 115 /de Length: 115 //de Referenced to phase 2:NBSB, Start of Yellow ex Arthared-Coordinated	educed v/c Ratio	0.19			0.93	0.33					
as Types. a Type to the recommendation of t	or account of the control of the con	as Type: Attack Cycle Length: 115 Steat 0 (0%), Referenced to phase 2:NBSB, Start of Yellow	breaction Summany										
to the Length: 115 studied Cycle Length: 115 feet 0 (0%), Referenced to phase 2:NBSB, Start of Yellow	ea 1yec length; 115 trusted Cyde Length; 115 feet 0 (0%), Referenced to phase 2:NBSB, Start of Yellow thrull Tyon 2 Archard-Coordinated	as an type: cicle Logdh: 115 stuated Cyde Length: 115 fset D (0%), Referenced to phase 2:NBSB, Start of Yellow Malta (Cyde: 13 and Chowritinaled	T. T										
tuated Cyde, Length: 115 Sect 0 (0%), Referenced to phase 2:NBSB, Start of Yellow That I Cyde: 130 That I Cyde: 130 That I Cyde: 130 That I Cyde: 130	tuated Cyde Length: 115 Set 10 (0%), Referenced to phase 2:NBSB, Start of Yellow tural Cycle : 130	stuated Cycle Length: 115 Sect 0 (0%), Referenced to phase 2:NBSB, Start of Yellow Malta (Cycle 1330 White I (2012)	ea Type:	Other									
Set 0 (0%), Referenced to phase 2:NBSB, Start of Yellow hard Cycle, 130	Seet 0 (0%), Referenced to phase 2:NBSB, Start of Yellow futual Cycle: 130	Sect 0 (0%), Referenced to phase 2:NBSB, Start of Yellow turns Cycle: 130	tuated Cycle Length: 11	2									
fural Cy (Ar. 17). And the control of the control	tural Cycles 130 Annual Cycles 130 Annual Achitatant-Convolination	furial Cycle 730 Turner Definition of Control and Con	fset 0 (0%) Referencer	to phase 2-NRS	R Star	t of Yello	W						
about John Antiotal Promise and	transity Types. 100 Transity Types. 100	indra Ojace. 35 Intra Time: Actuated Contributed	thiral Cycle: 130	S S S S S S S S S S S S S S S S S S S	ב ב								
			patrol Type: Actuated Co	ordinotod									
Maximum v/a Datio: 0 03			Maximum v/o Dotto: 11 U.S.										

Synchro 11 Report Page 11 Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 8: High Ridge Rd & Cross Rd

2023 Background Conditions PM Peak Intersection LOS: B ICU Level of Service A

Intersection Signal Delay: 17.4 Intersection Signal Delay: 17.4 Intersection Capacity Utilization 54.5% ICU I Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 8: High Ridge Rd & Cross Rd #1 #8

#1 #8	05	33 s
8#	* * RO4	29 s

Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 1: High Ridge Rd & Oaklawn Ave

2023 Background Conditions Saturday Midday Peak

1: High Ridge Ro

Sweetspot (111 High Ridge Road) 1: High Ridge Rd & Oaklawn Ave

2023 Background Conditions Saturday Midday Peak

NBR SBL SBT Ø1 Ø3 3 126 899 1900 1900 1900 0.95 1.00 0.95 0 1770 3639 0 1770 66 0 1770 0.00 0 0.0 0 0	ane Group ane Configurations	WBL	WBR	NBT	NBR	SBL	SBT	Ø	Ø3	Ø4
10.0	ane Configurations	944								
322 64 906 3 126 899 32 64 906 13 126 899 1900 1900 1900 1900 1900 0.977 0.95 0.95 0.95 1.00 0.95 3382 0 3639 0 1770 3539 0.960 3382 0 269 3539 3382 0 3639 0 289 3539 0.94 0.94 0.94 0.94 0.94 0.94 2 343 68 964 3 134 956 0.94 0.95 0.90 0.90 0.90 0.00 0.00 0.00 0.00 0.00 0.00	(day) omile/1-12-	-		₩		<u>-</u>	‡			
322 64 906 3 108 899 0.97 0.95 0.95 0.90 1900 0.97 0.95 0.95 0.90 0.90 3382 0 3539 0 1770 3539 0.960 3382 0 3539 0 1770 3539 0.960 3382 0 3539 0 289 3539 0.94 0.94 0.94 0.94 0.94 0.94 343 68 964 3 134 966 0.94 0.94 0.94 0.94 0.94 0.94 0.95 0.94 0.94 0.94 0.94 0.94 0.96 0.96 0.96 0.90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	affic Volurie (vpri)	322	8	906	က	126	836			
1900 1900 1900 1900 1900 1900 1900 0 0 0	rture Volume (vph)	322	2	906	က	126	836			
0.975 0.975 0.975 0.975 0.975 0.986 0.986 0.986 0.986 0.986 0.987 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.994	eal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
0.977 0.980 0.980 0.980 0.980 0.980 0.155 0.980 0.155 0.980 0.156 0.156 0.990 0.156 0.990 0.940 0.941 0.941 0.941 0.941 0.941 0.942 0.943 0.944 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.944 0.947 0.948	ne Util. Factor	0.97	0.95	0.95	0.95	1:00	0.95			
0.960 0.960 0.960 0.382 0.960 0.382 0.960 0.155 0.960 0.155 0.990 0.240 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.00 0.0		0.975								
3382 0 3539 0 1770 3539 0.960 0 10.55 3382 0 3539 0 0.155 3382 0 3539 0 0.155 30 30 30 280 240 240 249 242 6 6 6 6 6 6 C1-10 0 0 0 0.10 -10 0 0 0 0 0.0 -10 0 0 0 0 0.0 -10 0 0 0 0 0 0.0 -10 0 0 0 0 0 0.0 -10 0 0 0 0 0 0 0.0 -10 0 0 0 0 0 0 0.0 -10 0 0 0 0 0 0 0.0 -10 0 0 0 0 0 0 0.0 -10 0 0 0 0 0 0 0.0 -10 0 0 0 0 0 0 0.0 -10 0 0 0 0 0 0 0.0 -10 0 0 0 0 0 0 0 0.0 -10 0 0 0 0 0 0 0 0.0 -10 0 0 0 0 0 0 0 0 0.0 -10 0 0 0 0 0 0 0 0 0 0.0 -10 0 0 0 0 0 0 0 0 0 0 0.0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	: Protected	0.960				0.950				
0.960 0.155 0.289 3539 0.155 0.960 0.155 0.280 3539 0.155 0.	itd. Flow (prot)	3382	0	3539	0	1770	3539			
3382 0 3539 0 289 3539 No Yes 30 290 240 240 2412 6 6 5 5 48 411 0 967 0 134 956 -10 0 0 0 0 -10 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	: Permitted	0.960				0.155				
No Yes 30 30 30 290 240 241 66 66 67 7411 0 967 0 134 956 10 10 25 30 134 956 141 0 967 0 134 956 10 10 10 25 30 0 10 10 10 10 0 0 0 0 0 0 0	itd. Flow (perm)	3382	0	3539	0	289	3539			
30 30 30 30 30 30 30 30 30 30 30 30 30 3	ght Turn on Red		8		Yes					
30 30 30 30 30 30 30 30 30 30 30 30 30 3	Itd. Flow (RTOR)									
290 240 212 66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	nk Speed (mph)	8		8			೫			
6.6 5.5 4.8 4.8 6.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0	nk Distance (ft)	290		240			212			
0.94 0.94 0.94 0.94 0.94 0.94 0.94 3.33 1.34 9.66	avel Time (s)	9.9		5.5			4.8			
343 68 964 3 134 956 411 0 967 0 134 956 -10 0 0 -10 -10 0 0 0 -10 -10 0 0 0 0 -10 -10 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94			
10 967 0 134 956 10 25 30 0 -10 0 0 -10 -10 0 0 0 -10 -10 0 0 0 0 -10 0 0 0 0 0 -10 0 0 0 0 0 0 -10 0 0 0 0 0 0 -10 0 0 0 0 0 0 -10 0 0 0 0 0 0 -10 0 0 0 0 0 0 -10 0 0 0 0 0 0 -10 0 0 0 0 0 0 -10 0 0 0 0 0 0 -10 0 0 0 0 0 0 -10 0 0 0 0 0 0 -10 0 0 0 0 0 0 -10 0 0 0 0 0 0 -10 0 0 0 0 0 0 -10 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i. Flow (vph)	343	89	964	က	13	926			
411 0 967 0 134 956 10 25 30 0 -10 0 0 -10 -10 0 0 0 -10 -10 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ared Lane Traffic (%)									
s 2 1 3 1 10 25 30 0 10 -10 0 0 -10 10 0 0 0 -10 10 0 0 0 0 0 0 10 0 0 0 0 0 0 0 10 0 0 0	ne Group Flow (vph)	411	0	296	0	134	926			
(h) -10	mber of Detectors	2		-		က	-			
10 25 30 0 110 25 30 0 110 0 0 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 0 0 0 0 0 10 0 0 0 0 0 0 11 0 0 0 0 0 11 0 0 0 0 0 12 0 0 0 0 0 13 0 0 0 0 0 0 14 0 0 0 0 0 0 15 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 17 0 0 0 0 0 0 18 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 11 0 0 0 0 0 0 11 0 0 0 0 0 0 12 0 0 0 0 0 0 13 0 0 0 0 0 0 14 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tector Template									
(h) -10 0 0 -10 -10 -10 -10 -10 -10 -10 -10	ading Detector (ft)	9		22		8	0			
(h) -10 0 0 -10 10 10 10 10 10	ailing Detector (ft)	-10		0		0	-10			
6 Cl+Ex Cl+E	tector 1 Position(ft)	-10		0		0	-19			
(c)	tector 1 Size(ft)	9		22		9	9			
s) 0.0 0.0 0.0 0.0 0.0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	tector 1 Type	CI+EX		CI+EX		CI+EX	CI+Ex			
s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	tector 1 Channel									
(a) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	tector 1 Extend (s)	0.0		0.0		0.0	0.0			
(h) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	tector 1 Queue (s)	0.0		0.0		0.0	0.0			
(a) 6 (b) 6 (c) 6	tector 1 Delay (s)	0.0		0.0		0.0	0.0			
6 6 (1+Ex Cl+Ex Cl	tector 2 Position(ft)	4				12				
S) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	tector 2 Size(ft)	9				9				
s) 0.0 0.0 24 (f) 6 CA+EX S) Prot NA D/P+P NA 5 2 13 123 1 3 7.0 15.0 3.0 1.0 11.9 20.0 7.0 24.0 26.0 440 70	tector 2 Type	CI+EX				CI+EX				
(f) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	tector 2 Channel									
(f) 24 (f) 24 (f) 25 (f	tector 2 Extend (s)	0.0				0.0				
S) Prot NA D.P+P NA 5 70 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	tector 3 Position(ft)					24				
S) O.0	tector 3 Size(ft)					9				
5 2 13 123 1 3 5 70 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	tector 3 Type					CI+EX				
Prot NA D.P.+P NA 5 2 13 123 1 3 3 1	tector 3 Channel									
Frot NA DP+P NA 5 1 3 12 12 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 3 1 1 3 1 2 3 1 1 3 1 2 3 1 1 3 1 2 3 1 1 3 1 2 3 1 1 3 1 2 3 1 1 3 1 2 3 1 1 3 1 3	tector 3 Extend (s)					0.0				
5 2 13 123 1 3 2 2 2 3 7.0 150 30 1.0 11.9 20.0 7.0 7.0 7.0 240 260 140 7.0	n Type	Prot		Ν		D.P+P	Ν			
5 2 13 123 7.0 150 3.0 1.0 11.9 20.0 7.0 7.0 24.0 28.0 140 7.0	stected Phases	വ		7		13	123	-	က	4
7.0 15.0 3.0 1.0 1.1 2.0 7.0 7.0 7.0 1.0 1.0 1.1 1.1 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	mitted Phases			c		7 5				
7.0 15.0 3.0 1.0 11.9 20.0 7.0 7.0 7.0 24.0 26.0 14.0 7.0	lector Priase	C		7		2	671			
11.9 20.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	illori mitial (e)	4.0		15.0				000	-	<u></u>
24.0 26.0 14.0 7.0 2.0 14.0 7.0 24.0 26.0 14.0 7.0 24.0 26.0 14.0 7.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24	mmum mittal (s)	5. 5.		0.00				0.0	0.0	0.00
0.7 0.41 0.02 0.04 0.040	mindin opin (s)	9. 5		26.0				0. 5	0.7	0.62
/0/ /0V L /0V PT.	al cplit (s)	04.0		700 30				7.40	2.7	2000

Lanes, Volumes, Timings Synchro 11 Report SLR

	Ø3 Ø4		4.7 4.0	1.3 0.0				Yes Yes		Max None	7.0	18.0	2																											
	<u>ه</u>	10.0	3.0	1.0			Lead	Yes	1.5	Min																														
→	SBT												o o	0.00	0.39	1.7	0.1	1.7	∢	5.9	⋖	= :	46	132	0070	2436	384	0	0.47								0	Intersection LOS: C		
٠	SBL												a Og	0.00	0.31	11.2	0.3	11.5	Ф			- ;	74		907	429	09	0	0.36								Lacitore	Intersection LOS: C		
•	NBR																																	M			opul.			e longer.
←	NBT	21.0	4.0	1.0	0.0	2.0	Lag	Yes	3.0	C-Min			7 01	0.43	0.64	28.5	0.1	28.6	O	28.6	ပ	238	#244	160	1	1511	0 4	3	99:0					t of Yello						ue may be
4	WBR																																	BSB, Star						acity, que
\	WBL	19.1	3.0	1.9	0.0	4.9			1.0	None			4	0.16	0.74	47.9	0.0	47.9	Ω	47.9		158	176	210	100	651	0 0	0 0	0.63		ier			hase 2:N	7	nated		. 54 9%		eds caps
	Lane Group	Maximum Green (s)	Yellow Time (s)	All-Red Time (s)	Lost Time Adjust (s)	Total Lost Time (s)	Lead/Lag	Lead-Lag Optimize?	Vehicle Extension (s)	Recall Mode	Walk Time (s)	Flash Dont Walk (s)	Pedestrian Calls (#/hr)	Actuated o/C Ratio	v/c Ratio	Control Delay	Queue Delay	Total Delay	FOS	Approach Delay	Approach LOS	Queue Length 50th (ft)	Queue Length 95th (ft)	Internal Link Dist (ft)	Turn Bay Length (ft)	Base Capacity (vph)	Starvation Cap Reductn	Spinoach Cap Neutral	Storage Cap Reducting Reduced v/c Ratio	Intersection Summary	Area Type: Other	Cycle Length: 100	Actuated Cycle Length: 100	Offset: 0 (0%), Referenced to phase 2:NBSB, Start of Yellow	Natural Cycle: 90	Control Type: Actuated-Coordinated	Information Circuit Delay 20 F	Intersection Capacity Itilization 54 9%	Analysis Period (min) 15	# 95th percentile volume exceeds capacity, queue may be longer.

Sweetspot (111 High Ridge Road) 2: Halpin Ave & Oaklawn Ave

2023 Background Conditions Saturday Midday Peak

	^	†	<u> </u>	/	ļ	1	•	—	4	٠	→	•
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			æ			4			4	
Traffic Volume (vph)	2	130	0	0	355	9	9	ည	289	2	0	2
Future Volume (vph)	7	130	0	0	355	9	9	2	289	2	0	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1:00	1.00	1.00	1.00	1:00	1.00	1.00	1:00	1.00	1.00	1.00	1.00
Ped Bike Factor												
T.L					0.998			0.875			0.961	
Fit Protected		0.999						0.997			996.0	
Satd. Flow (prot)	0	1861	0	0	1859	0	0	1625	0	0	1729	0
FIt Permitted		0.999						0.997			996.0	
Satd. Flow (perm)	0	1861	0	0	1859	0	0	1625	0	0	1729	0
Link Speed (mph)		8			8			30			30	
Link Distance (ft)		230			240			230			214	
Travel Time (s)		9.9			5.5			5.2			4.9	
Confl. Peds. (#/hr)	-					-						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	2	141	0	0	386	7	20	2	314	2	0	2
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	143	0	0	393	0	0	339	0	0	7	0
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalized												
Intersection Capacity Utilization 44.5%	ation 44.5%			ਠ	U Level o	ICU Level of Service A	⋖					
P. L. A.												

Lanes, Volumes, Timings Synchro 11 Report SLR Page 3

Sweetspot (111 High Ridge Road) 2: Halpin Ave & Oaklawn Ave

2023 Background Conditions Saturday Midday Peak

Intersection													
Int Delay, s/veh	4.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SB	SBT	SBR	
Lane Configurations		4			£\$			4			€		
Traffic Vol, veh/h	2	130	0	0	355	9	4	2	289	2	0	2	
Future Vol, veh/h	7	130	0	0	322	9	9	2	588	വ	0	2	
Conflicting Peds, #/hr	-	0	0	0	0	_	0	0	0	0	0	0	
Sign Control	Free	Free	Free	F.08	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	1	1	None	1	1	None			None			None	
Storage Length	,	'	'	•	•	'	•			•	•		
Veh in Median Storage, #	+	0	1	1	0	1	٠	0	1	1	0		
Grade, %	٠	0		•	0	٠	•	0			0		
Peak Hour Factor	92	92	92	92	92	92	92	35	92	35	92	92	
Heavy Vehides, %	2	7	2	7	7	2	7	2	2	7	7	2	
Mvmt Flow	2	141	0	0	386	7	20	2	314	2	0	2	
Major/Minor M	Major1		2	Major2		Σ	Minor1		_	Minor2			
Conflicting Flow All	394	0	١.			0	536	539	141	969	536	391	
Stage 1	٠	1	1	1	•	1	145	145	1	391	391		
Stage 2	٠	'				٠	391	394		302	145		
Critical Hdwy	4.12	1	•	1	1	1	7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1	٠	•	٠		٠	٠	6.12	5.52	١	6.12	5.52		
Critical Hdwy Stg 2	٠	1	٠	•	٠	٠	6.12	5.52	•	6.12	5.52	,	
Follow-up Hdwy	2.218	•	٠	٠	٠	,	3.518	4.018	3.318	3.518	4.018	3.318	
Pot Cap-1 Maneuver	1165	1	0	0	1	1	455	449	200	326	451	658	
Stage 1	•	'	0	0	•	•	828	111	•	633	607	,	
Stage 2	ì	1	0	0	1	1	633	909	1	705	777	·	
Platoon blocked, %		•			•	'							
Mov Cap-1 Maneuver	1164	1	1	1	1	1	453	448	907	230	450	657	
Mov Cap-2 Maneuver	٠	•	•	٠	٠	٠	453	448	•	230	420	,	
Stage 1	٠	1	•	1	•	•	826	775	1	631	909		
Stage 2	٠	•	٠	•	٠	٠	631	604	•	457	775		
Approach	B			WB			BB			SB			
HCM Control Delay, s	0.1			0			12.1			18.1			
HCM LOS							ш			ပ			
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	WBT	WBR SBLn1	BLn1						
Capacity (veh/h)		844	1164	٠	٠	٠	282						
HCM Lane V/C Ratio			0.002	•	٠	•	0.027						
HCM Control Delay (s)		12.1	8.	0	•	٠	18.1						
HCM Lane LOS		Ф	∀	⋖	٠	١	ပ						
HCM 95th %tile Q(veh)		2	0	•	•	•	0.1						

HCM 6th TWSC Synchro 11 Report SLR Page 4

Sweetspot (111 High Ridge Road) 2023 Background Conditions 3: High Ridge Rd & Halpin Ave

	>	4	-	•	٠	→	
Lane Group	WBL	WBR	NBT	NBR	SS	SBT	
Lane Configurations			₩.			₹₩₩	
Traffic Volume (vph)	0	0	915	248	61	1157	
Future Volume (vph)	0	0	915	248	61	1157	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	0		0	75		
Storage Lanes	0	0		0	-		
Taper Length (ft)	52				22		
Lane Util. Factor	1.00	1.00	0.95	0.95	0.91	0.91	
Frt			0.968				
Flt Protected						766.0	
Satd. Flow (prot)	0	0	3426	0	0	2070	
Flt Permitted						0.997	
Satd. Flow (perm)	0	0	3426	0	0	5070	
Link Speed (mph)	8		8			30	
Link Distance (ft)	187		292			394	
Travel Time (s)	4.3		9.9			0.6	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Adj. Flow (vph)	0	0	984	267	99	1244	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	0	1251	0	0	1310	
Sign Control	Stop		Free			Free	
Intersection Summary							
	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization 63.5%	n 63.5%			ಠ) Level o	ICU Level of Service B	
Analysis Period (min) 15							

Synchro 11 Report Page 5

Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 4: High Ridge Rd & N Driveway

2023 Background Conditions Saturday Midday Peak

	\	4	←	•	٠	→	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	>		4₽			444	
Traffic Volume (vph)	4	10	833	∞	9	1215	
Future Volume (vph)	4	10	833	œ	9	1215	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	0		0	100		
Storage Lanes	_	0		0	_		
Taper Length (ft)	52				22		
Lane Util. Factor	1.00	1.00	0.95	0.95	0.91	0.91	
ŧ	0.901		0.999				
Fit Protected	0.987						
Satd. Flow (prot)	1657	0	3536	0	0	5085	
Flt Permitted	0.987						
Satd. Flow (perm)	1657	0	3536	0	0	5085	
Link Speed (mph)	9		30			30	
Link Distance (ft)	145		228			240	
Travel Time (s)	3.3		5.2			5.5	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Adj. Flow (vph)	4	=	926	တ	9	1293	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	15	0	965	0	0	1299	
Sign Control	Stop		Free			Free	
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization 37.6%	ition 37.6%			೨	U Level o	ICU Level of Service A	
Analysis Period (min) 15							

Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 4: High Ridge Rd & N Driveway

Sweetspot (111 High Ridge Road) 4: High Ridge Rd & N Driveway	High Rd & I	n Ridç N Driy	je Rc /ewa	y y			2023 Background Conditions Saturday Midday Peak
Intersection							
Int Delay, s/veh	0.2						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	>		₹			444	
Traffic Vol, veh/h	4	9	833			1215	
Future Vol, veh/h	4		88		9	1215	
Conflicting Peds, #/hr	0		0	0	0	0	
Sign Control	Stop		Free	Free	Free	Free	
RT Channelized	1		1	None	1	None	
Storage Length		•	•	٠	100	•	
Veh in Median Storage, #	9, # 0	1	0	1	•	0	
Grade, %	0		0	٠	٠	0	
Peak Hour Factor	94	ষ্ঠ	94	짫	94	8	
Heavy Vehicles, %	2		2	2 0	2 9	2	
MAIILLIOW	t	=	200	D	>	5621	
Major(Minor	Minor 1		Major	2	Major		
	I DI III		viajui i	-	ajul z	4	
Conflicting Flow All	1490	483	0	0	305	0	
Stage 1	961	•	•	•	•		
Stage 2	529		•	١	' :	•	
Critical Hdwy	6.29	6.94		•	4.14		
Critical Hdwy Stg 1	5.84	1	1	•	١		
Critical Howy Stg 2	6.04				' 6	•	
Follow-up Hawy	3.07		1	۱	77.7		
Pot Cap-1 Maneuver	141	53			60/		
Stage 1	324		٠	٠	٠		
Stage Z	275	•	•				
Platoon blocked, %			'	٠	i		
Mov Cap-1 Maneuver	137	53	•	•	709		
Mov Cap-2 Maneuver	137	•	•	٠	٠		
Stage 1	324	•	1	•	•		
Stage 2	206	•	'	٠	٠		
Approach	WB		R		SB		
HCM Control Delay s			C		0.1		
HCM LOS	O						
Minor Lane/Major Mvmt	±	NBT	NBR	NBRWBLn1	SBL	SBT	
Capacity (veh/h)		1		291	602		
HCM Lane V/C Ratio					0.009		
HCM Control Delay (s)		1	1		10.1	0.1	
HCM Lane LOS		'	•		ш	A	
HCM 95th %tile Q(veh)	_	•	•	0.2	0		

Synchro 11 Report Page 7 HCM 6th TWSC SLR

Sweetspot (111 High Ridge Road) 6: Halpin Ave & N Driveway

2023 Background Conditions Saturday Midday Peak

	R		0	0	00	00				0		0				2	37	0		0					vice A
→	SBT SBR		0	0	1900 1900	1.00 1.00				0		0	30	230	5.2		0.87 0.87	0		0	Stop				ICU Level of Service A
←	NBT	€	314	314	1900	1.00			0.998	1859	0.998	1859	30	328	8.1		0.87	361		375	Free				ICN
•	NBL		12	12	1900	1.00				0		0				2	0.87	14		0					
<i>></i>	EBR		0	0	1900	1.00				0		0				~	0.87	0		0					
1	EBL	<i>y</i> -	16	16	1900	1:00			0.950	1770	0.950	1770	9	<u>\$</u>	3.0		0.87	18		18	Stop		Other	ō	zation 34.2%
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Ideal Flow (vphpl)	Lane Util. Factor	Ped Bike Factor	표	Flt Protected	Satd. Flow (prot)	Flt Permitted	Satd. Flow (perm)	Link Speed (mph)	Link Distance (ft)	Travel Time (s)	Confl. Peds. (#/hr)	Peak Hour Factor	Adj. Flow (vph)	Shared Lane Traffic (%)	Lane Group Flow (vph)	Sign Control	Intersection Summary	Area Type:	Control Type: Unsignalized	Intersection Capacity Utilization 34.2%

Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 6: Halpin Ave & N Driveway

SBT

EBR NBL NBT

Intersection Int Delay, s/veh

Lane Configurations 17
Traffic Vol. veh/h 16
Conflicting Peds, #hr 0
Sign Control
Sign Control
Stroage Length 0
Veh in Median Storage, # 0
Crade, % 0
Peak Hour Factor 87
Heavy Vehicles, % 2
Mwmt Flow 18

0

- 4.12

- 2.218 0 1620

 Major/Minor
 Minor2

 Conflicting Flow All
 391

 Stage 1
 2

 Stage 2
 389

 Critical Hdwy
 6.42

 Critical Hdwy Sig 1

 Critical Hdwy Sig 2
 5.42

 Frollow-up Hdwy
 3.518

 Pot Cap-1 Maneuver
 613

 Stage 1

 Stage 2
 685

 Platron Blocked, %
 685

 Mov Cap-1 Maneuver
 604

 Mov Cap-2 Maneuver
 604

 Stage 1

 Stage 2
 685

 Stage 3

 Stage 4

 Stage 1

2023 Background Conditions Saturday Midday Peak

veetspot (111 High Ridge Road) High Ridge Rd & Cross Rd	
Sweets 8. High	0

2023 Background Conditions Saturday Midday Peak

	Ø4																																										
	02																																										
	Ø																																										
•	SBR		7	1900	100	0		0.91			0		0 00	8				_	0.91	∞	c	>																					
→	SBT	444	994	1900	2			0.91	00.0		6209		2079	<u></u>	30	360	8.2		0.91	1092	1100	5 -	-	25	0	0	25	Č+ C+ C+	0.0	0.0	0.0												
←	NBT	स्∳	896	1900				0.95	3		3539	0.954	3376		30	212	4.8		0.91	1064	1066	9	>	0	0	0	9 1	Ĕ Ċ	0.0	0.0	0.0												
•	NBL		2 0	1900	0	0	22	0.95			0		0					_	0.91	2	c	- c	Left	20	0	0		C.+	0.0	0.0	0.0												
<i>></i>	EBR		30	1900	0	0		1.00			0		0 00/	3				~	0.91	33	-	>																					
1	EBL	>	<u>ත</u> ද	1900	0	_	22	1.00	0.99	0.985	1645	0.985	1645	33	8	409	9.3		0.91	4	47	F∇		320	9	မှ	9 1	Ĕ Ċ	0.0	0.0	0.0	9 0	o ÷		0.0	18	9	CI+EX		0.0	314	9 À	5 1
	Lane Group	Lane Configurations	Traffic Volume (vph)	Ideal Flow (vohol)	Storage Length (ft)	Storage Lanes	Taper Length (ft)	Lane Util. Factor	Fed bike ractor	Flt Protected	Satd. Flow (prot)	Flt Permitted	Satd. Flow (perm)	Satd. Flow (RTOR)	Link Speed (mph)	Link Distance (ft)	Travel Time (s)	Confl. Peds. (#/hr)	Peak Hour Factor	Adj. Flow (vph)	l ane Group Flow (vnh)	Number of Detectors	Detector Template	Leading Detector (ft)	Trailing Detector (ft)	Detector 1 Position(ft)	Detector 1 Size(ft)	Detector 1 Type Detector 1 Channel	Detector 1 Extend (s)	Detector 1 Queue (s)	Detector 1 Delay (s)	Detector 2 Position(#)	Detector 2 Type	Detector 2 Channel	Detector 2 Extend (s)	Detector 3 Position(ft)	Detector 3 Size(ft)	Detector 3 Type	Detector 3 Channel	Detector 3 Extend (s)	Detector 4 Position(ft)	Detector 4 Size(ft)	Detector 4 Channel

Synchro 11 Report Page 9

HCM 6th TWSC SLR

1617 - 604 0.009 - 0.03 7.2 0 11.1 A A B 0 - 0.1

Minor LaneMajor Murnt Capadity (vehh) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM Lane LOS

. .

0.3

Approach EB HCM Control Delay, s 11.1 HCM LOS B

- 1617

Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 8: High Ridge Rd & Cross Rd

2023 Background Conditions Saturday Midday Peak

	94			4				1.0	29.0	29.0	29%	25.0	4.0	0.0			Lag	Yes	3.0	None	7.0	18.0	2																		
	02			2				15.0	20.0	26.0	76%	21.0	4.0	1.0			Lag	Yes	3.0	C-Min																					
	Ø			-				3.0	7.0	14.0	14%	10.0	3.0	1.0			Lead	Yes	1.5	E.																					
•	SBR																																								
→	SBT		Ä	12		12																		61.8	0.62	0.35	12.2	0.0	12.2	ш	12.2	ш	26	253	280		3141	0	0	0	
-	NBT		Ä	23		23																		44.7	0.45	0.71	12.2	0.0	12.2	ш	12.2	ш	9	#254	132		1512	0	0	0	1
•	NBL		custom	က	5	က		1.0	7.0	7.0	7.0%	1.0	4.7	1.3			Lead	Yes	3.0	Max																					
>	EBR																																								
١	EB	0.0	Prot	2		2		0.7	11.9	24.0	24.0%	19.1	3.0	1.9	0.0	4.9			1.0	None				16.5	0.16	0.16	17.5	0.0	17.5	മ	17.5	മ	∞	ස	329		343	0	0	0	,
	Lane Group	Detector 4 Extend (s)	Turn Type	Protected Phases	Permitted Phases	Detector Phase	Switch Phase	Minimum Initial (s)	Minimum Split (s)	Total Split (s)	Total Split (%)	Maximum Green (s)	Yellow Time (s)	All-Red Time (s)	Lost Time Adjust (s)	Total Lost Time (s)	Lead/Lag	Lead-Lag Optimize?	Vehicle Extension (s)	Recall Mode	Walk Time (s)	Flash Dont Walk (s)	Pedestrian Calls (#/hr)	Act Effct Green (s)	Actuated g/C Ratio	v/c Ratio	Control Delay	Queue Delay	Total Delay	TOS	Approach Delay	Approach LOS	Queue Length 50th (ft)	Queue Length 95th (ft)	Internal Link Dist (ft)	Turn Bay Length (ft)	Base Capacity (vph)	Starvation Cap Reductn	Spillback Cap Reductn	Storage Cap Reducth	

Area Type:
Cycle Length: 100
Actualed Cycle Length: 100
Offset 0 (0%), Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 90
Control Type: 80
Maximum vic Ratio: 0.74 Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 8: High Ridge Rd & Cross Rd

2023 Background Conditions Saturday Midday Peak

Intersection LOS: B ICU Level of Service A # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles Intersection Signal Delay: 12.3 Intersection Capacity Utilization 42.2% Analysis Period (min) 15

Splits and Phases:

8: High Ridge Rd & Cross Rd #1 #8

#1 #8 T MOZR

#1 #8	24s

Lanes, Volumes, Timings SLR

Synchro 11 Report Page 11

Sweetspot (111 High Ridge Road) 1: High Ridge Rd & Oaklawn Ave

2023 Combined Conditions PM Peak

Sweetspot (111 High Ridge Road) 1: High Ridge Rd & Oaklawn Ave

2023 Combined Conditions PM Peak

	•	/ [— į	١	k 5	▶ 100	ě	S	Š	
ane Group	WBL	WBR	NBI	NBK	SBL	SBT	<u>6</u>	Ø3	04	Lane Group
ane Configurations	-		4		<u>r</u>	‡				Maximum Green (s
raffic Volume (vph)	296	103	1325	∞ (199	829				Yellow Time (s)
Future Volume (vph)	296	103	1325	∞ .	199	826				All-Red Time (s)
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900				Lost Time Adjust (s
ane Util. Factor	0.97	0.95	0.95	0.95	1.00	0.95				lotal Lost Time (s)
F.T.	0.90		0.999		030					Lead/Lag
Pit Plotected	3415	c	3608	c	1805	3610				Vehido Extension
Satu. Flow (prot)	0.964	>	2000	>	080	20100				Velide Extension
Satd Flow (norm)	3415	_	3608	_	152	3610				Walk Time (s)
Sight Turn on Red	2	S S	3000	No No	30	2				Flach Dopt Walk (s)
Satd Flow (RTOR)		2		3						Pedestrian Calls (#)
ink Speed (mph)	90		30			90				Act Effet Green (s)
Link Distance (ft)	290		240			212				Actuated o/C Ratio
ravel Time (s)	9.9		5.5			4.8				v/c Ratio
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97				Control Delay
Adj. Flow (vph)	305	106	1366	∞	205	988				Queue Delay
Shared Lane Traffic (%)										Total Delay
ane Group Flow (vph)	411	0	1374	0	202	988				SOT
Number of Detectors	2		Ψ.		က	τ-				Approach Delay
Detector Template										Approach LOS
eading Detector (ft)	9		22		೫	0				Queue Length 50th
railing Detector (ft)	-10		0		0	-10				Queue Length 95th
Detector 1 Position(ft)	-10		0		0	-10				Internal Link Dist (f
Detector 1 Size(ft)	9		52			9				Turn Bay Length (f
Detector 1 Type	Ci+EX		CI+EX		C+EX	CI+EX				Base Capacity (vph
Detector 1 Channel	ć		c		0	0				Starvation Cap Rec
Detector 1 Extend (s)	0.0		0.0		0.0	0.0				Spillback Cap Redu
Detector 1 Queue (s)	0.0		0.0		0.0	0.0				Storage Cap Reduc
Detector 1 Delay (s)	0.0		0.0		0.0	0.0				Reduced v/c Katio
Detector 2 Position(II)	4 (2 4					Intersection Summa
Jetector 2 Size(II)	2				ے م					Area Type:
Detector 2 Type	ž Č				Ĕ Š					Cycle Length: 115
Detector 2 Extend (e)					0					Actuated Cycle Len
Detector 3 Position(ff)	9.				2.0					Offset: 0 (0%), Refe
Detector 3 Size(ff)					ဗ					Natural Cycle: 130
Detector 3 Type					CI+EX					Control Type: Actua
Detector 3 Channel										Maximum v/c Katio
Detector 3 Extend (s)					0.0					Intersection Signal
Furn Type	Prot		Ν		D.P+P	NA				Intersection Capaci
Protected Phases	2		2		13	123	_	က	4	Alialysis Fellod (IIII)
Permitted Phases					7					si cuso de cuento
Detector Phase	2		2		13	123				TIMOIIS ADADO
Switch Phase										Splits and Dhases:
Minimum Initial (s)	7.0		15.0				3.0	1.0	1.0	# 1#
num Split (s)	11.9		20.0				0.7	0.7	29.0	_
Total Split (s)	33.0		29.0				17.0	0.7	29.0	4 4 Ø1
(%) ± (%)	% X		2/2				12%	%9	%57.	1/8

Synchro 11 Report Page 2

Lanes, Volumes, Timings SLR

	,	J	•	•	٠	→				
Lane Group	WBL W	WBR NI	NBT	NBR	SBL	SBT	Ø 1	Ø3	04	
Maximum Green (s)	28.1	77	0.4				13.0	1.0	25.0	
Yellow Time (s)	3.0	7	4.0				3.0	4.7	4.0	
All-Red Time (s)	1:9		1.0				1.0	1.3	0:0	
Lost Time Adjust (s)	0.0	J	0.0							
Total Lost Time (s)	4.9	4,	2.0							
Lead/Lag		→ >	Lag Yes				Lead	Lead	Lag	
Vehicle Extension (s)	1.0	,	3.0				1.5	3.0	3.0	
Recall Mode	None	S	C-Min				Min	Max	None	
Walk Time (s)									7.0	
Flash Dont Walk (s)									18.0	
Pedestrian Calls (#/hr)									10	
Act Effct Green (s)	20.0	22	53.4		72.3	80.3				
Actuated g/C Ratio	0.17	0	0.46		0.63	0.70				
v/c Ratio	69.0	0	0.82		0.58	0.35				
Control Delay	50.4	8	33.8		24.1	1.4				
Queue Delay	0.5	_	0.5		1.6	0.1				
Total Delay	6.03	જ	.3		25.6	7.5				
FOS	□ ⁶	č	0 9		O	∢ 0				
Approach Delay	9.0c	*	م الم			0.0				
Approach LOS	J 94		ر د د		70	∢ Ի				
Queue Length 30th (ft)	787	* 0#	4047	4	4138	- 00				
Informall ink Diet (#)	240	£ ~	160	•	200	130				
Turn Bay I enoth (ft)	017		3			70				
Base Canacity (wh)	834	16	1673		36.1	2511				
Starvation Can Reductn	5	2	2 0		55	568				
Shillback Can Reducth	139		99		9 0	0				
Storage Cap Reductn	0		0		0	0				
Reduced v/c Ratio	0.59	0	98.0		29.0	0.46				
Intersection Summary										
	Other									
th: 115										
Actuated Cycle Length: 115										
Offset: 0 (0%), Referenced to phase 2:NBSB, Start of Yellow	phase 2:NBS	B, Start o	f Yellov	>						
Natural Cycle: 130										
Control Type: Actuated-Coordinated	Jinated									
Maximum v/c Ratio: 0.95										
Intersection Signal Delay: 25.9	6			Inter	Intersection LOS: C	၁ : - - -				
Intersection Capacity Utilization / 1.2% Analysis Period (min) 15	%Z'L / UO			3	evel or	ICU Level of Service C	,			
# 95th percentile volume exceeds canacity queue may be longer	inends canaci	diei o	may he	onder						
Queue shown is maximum after two cycles.	after two cyc	iles.	9							
Splits and Phases: 1: High	1: High Ridge Rd & Oaklawn Ave	Jaklawn A	Ne le							
#1 #8 #1 #8	4		#	e -				#	8##	
★ ★ Ø1 ★	🕈 🚩 💇 (R)	•	-	ž	P Ø4			*	05	

Sweetspot (111 High Ridge Road) 2: Halpin Ave & Oaklawn Ave

2023 Combined Conditions Peak

Lane Group EBL EBT EBR WBL WBT Lane Configurations 4 1	MBR NBL 6 30 6 30 1900 1900 1.00 1.00 0 0	N 0.80	NBR 439 439 1900 1.00	SBL 5 1900 1.00 0 0	SBT 0 0 1900 1.00 1.00 1.49 0.970	3 3 3 3 1900 1.00 0
ns	1900		← `		1900 0 0 1.00 0.949 0.970	1900
(h) 0 206 0 0 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1900				1900 1.00 1.00 0.949 0.970	1100
0 206 0 0 100 100 1900 1900 1900 1900 1900	190				1900 1.00 0.949 0.970	1.00
1900 1900 1900 1900 1900 1900 1900 1900	1.0				1900 1.00 0.949 0.970 1749	1.00
1.00 1.00 1.00 1.00 1.00 0.1 0.1 0.1 0.1	0.7				1.00 0.949 0.970 1749	0 0
0 1900 0 0 11 0 1900 0 0 11 30 30 15 590 5					0.949	0 0
0 1900 0 0 11 0 1 1 1 1 1 1 1 1 1 1 1 1					0.949 0.970 1749	0 0
0 1900 0 0 11 0 1900 0 0 11 30 30 0 11 590 56					1749	0 0
0 1900 0 01 0 1900 0 0 11 30 290 56					1749	0
0 1900 0 0 11 30 30 0 0 11 290 56		0			0.070	-
0 1900 0 0 11 30 290 :					0.870	C
30 290 6.6		CC		0	1749	٥
290		25			30	
9.9		230			214	
		5.2			4.9	
Confl. Peds. (#/hr) 4 1 1	4	_	2	2		~
Peak Hour Factor 0.96 0.96 0.96 0.96 0.96	96.0 96.0	96.0 9	96.0	96.0	96.0	0.96
Adj. Flow (vph) 0 215 0 0 332	6 31	3	457	2	0	က
Shared Lane Traffic (%)						
Lane Group Flow (vph) 0 215 0 0 338	0	0 491	0	0	œ	0
Sign Control Free Free		Stop			Stop	
ntersection Summary						
Area Type: Other						
Control Type: Unsignalized						
ation 52.7%	ICU Level of Service A					

Lanes, Volumes, Timings Synchro 11 Report SLR Page 3

Sweetspot (111 High Ridge Road) 2: Halpin Ave & Oaklawn Ave

2023 Combined Conditions PM Peak

Int Delay, Singh 82 November 84 November 84 November 84 November 84 November 85 November 84 November 85 November 86 Nove	Intercontion													
Feb. EBR WBL WBR NBL NBT	Int Delay s/yeh	8.2												
FBI FBI FBI WBI WBI NBI NBI NBI SBI SBI	in Dolay, a voil	9												
Najor N	Movement	EBL	EBT		WBL			NBL	NBT	NBR	SBL	SBT	SBR	
1	Lane Configurations		÷			4			4			4		
National	Traffic Vol, veh/h	0	206	0	0	319	9	30	က	439	2	0	ო	
Free	Future Vol, veh/h	0	206	0	0	319	9	30	က	439	2	0	က	
Free Free Free Free Free Sup Stop S	Conflicting Peds, #/hr	4	0	_	~	0	4	_	0	7	7	0	-	
None	Sign Control		Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
Hajort Majort Minor Service Se	RT Channelized	٠	•	None	٠	•	None	٠	٠	None	•	•	None	
Hajort 1 0 - 0 - 0 - 0 - 0 - 0 <td>Storage Length</td> <td>•</td> <td>•</td> <td>'</td> <td>•</td> <td>•</td> <td>'</td> <td>'</td> <td>٠</td> <td>•</td> <td>•</td> <td>•</td> <td></td> <td></td>	Storage Length	•	•	'	•	•	'	'	٠	•	•	•		
Second S	Veh in Median Storage,	+	0	٠	٠	0	٠	٠	0	٠	٠	0	,	
Major Major Minor M	Grade, %		0	•	•	0	٠	٠	0	•	•	0		
Majort Minor2 Major4 Minor2 Major4 Minor4 Minor4 3 457 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
Majort	Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0	
Majort Major2 Minor1 Minor2 342	Mvmt Flow	0	215	0	0	332	9	31	က	457	2	0	က	
Majort														
342 0 0 553 557 217 786 554 34		ajor1		2	lajor2		Σ	inor1		2	linor2			
Harmonia Properties of the control o	Conflicting Flow All	342	0				0	553	222	217	786	554	340	
4.1 338 342	Stage 1	٠	1	1	1	٠	1	215	215	٠	339	339		
4.1 - - - 7.1 6.5 6.2 7.1 6.5 6. 2.2 - -	Stage 2		•	•		٠	٠	338	342	٠	447	215		
128	Critical Hdwy	4.1	1	1	1	1	٠	7.1	6.5	6.2	7.1	6.5	6.2	
1228	Critical Hdwy Stg 1		٠	٠	٠	٠	٠	6.1	5.5	٠	6.1	5.5	,	
22	Critical Hdwy Stg 2	٠	٠	٠	٠	٠	٠	6.1	5.5	٠	6.1	5.5	,	
Fig. 1228 - 0 0 0 - 47 442 828 312 443 70 0 0 0 - 792 729 - 680 643 0 0 0 - 681 642 - 595 729 - 681 642 - 595 729 - 681 642 - 595 729 - 681 642 - 595 729 - 681 642 - 595 729 - 681 642 - 595 729 - 681 642 - 595 729 - 681 642 - 595 729 - 681 642 - 595 729 - 681 642 - 595 729 - 681 642 - 595 729 - 681 640	Follow-up Hdwy	2.2	٠	٠	٠	٠	٠	3.5	4	3.3	3.5	4	3.3	
er 1223 0 0 0 792 729 - 680 643 er 1223 0 0 0 681 642 - 595 729 er 1223 445 440 826 138 441 70 er 445 440 - 138 441 70 er 792 729 - 677 640 er 792 729 - 677 640 er 792 729 - 264 729 er 172 729 - 264 729 er 172 729 - 264 729 er 172 24 er 188 er 188 er 188 er 188 er 188 er	Pot Cap-1 Maneuver	1228	1	0	0	1	1	447	445	828	312	443	707	
Fr 1223	Stage 1	•	'	0	0	•	'	792	729	•	089	643	,	
er 1223 445 440 826 138 441 70 er 445 440 826 138 441 70 er 445 440	Stage 2	ì	1	0	0	1	ì	681	642	1	595	729	·	
Buver 1223 - - - 445 440 826 138 441 70 Buver - - - - - - 445 440 - 138 441 70 Feb - - - - - - - 475 269 - 57 640 - - - 640 - - 640 - - - 640 -	Platoon blocked, %		٠			٠	٠							
Barrer 1.5 1	Mov Cap-1 Maneuver	1223	1	•	1	1	٠	445	440	826	138	44	704	
Section Sect	Mov Cap-2 Maneuver	٠	٠	٠	٠	٠	٠	445	440	٠	138	4		
EB WB NB SB SB Iay, S 0 0 17,2 24 Iay, S 0 0 17,2 24 Iay (s) 17,2 1,2 Iay (s) 17,2 0 1,2 Iay (s) 1,4 1,5 Iay (s) 1,4 Iay (s)	Stage 1	·	1	•	1	•	ì	792	729	•	229	940		
EB WB NB NB NB NB NB NB N	Stage 2	٠	٠	٠	٠	٠	٠	229	639	٠	564	729		
EB WB NB NB NB NB NB NB N														
In the control of t	Approach	æ			WB			8			SB			
C Triving NBLn1 EBL EBT WBT WBR SBLn1 T79 1223 - 198 Ratio 0.631 0.042 Ray (s) 17.2 0 24 C A C Q(veh) 4.6 0 0.1	HCM Control Delay, s	0			0			17.2			24			
r Mvmt NBLn1 EBL EBT WBT WBR SB 779 1223 0. 3atio 0.631 0. lay (s) 17.2 0 0. C A 0. Q(veh) 4.6 0 0.	HCM LOS							ပ			ပ			
r Mwmt NBLn1 EBL EBT WBT WBR SE 779 1223 0 Ratio 0.631 0.0 Iay (s) 17.2 0 0 C A 0 Q(veh) 4.6 0														
atio 0.631 0.189 (s) 17.2 0 0.189 (s) 17.2 0 0.189 (s) 4.6 0 0.189 (s)	Minor Lane/Major Mvmt	Ž	3Ln1	EBL	EBT	WBT	WBRS	BLn1						
Agtio 0.631	Capacity (veh/h)		6//	1223	٠	٠	٠	198						
lay (s) 17.2 0 C A C A C A C A	HCM Lane V/C Ratio	0	.631	٠	٠	٠		0.042						
C A	HCM Control Delay (s)		17.2	0	•	1	٠	24						
4.6	HCM Lane LOS		ပ	∢	'	•	'	O						
	HCM 95th %tile Q(veh)		4.6	0	1	1	ì	0.1						

HCM 6th TWSC Synchro 11 Report SLR Page 4

Sweetspot (111 High Ridge Road) 2023 Combined Conditions 3: High Ridge Rd & Halpin Ave

	\	✓	←	•	۶	→	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations			₩			444	
Traffic Volume (vph)	0	0	1343	331	8	1043	
Future Volume (vph)	0	0	1343	331	8	1043	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	0		0	75		
Storage Lanes	0	0		0	-		
Taper Length (ft)	52				22		
Lane Util. Factor	1.00	1.00	0.95	0.95	0.91	0.91	
Fr			0.970				
Flt Protected						966:0	
Satd. Flow (prot)	0	0	3502	0	0	5166	
Flt Permitted						966.0	
Satd. Flow (perm)	0	0	3502	0	0	5166	
Link Speed (mph)	9		8			30	
Link Distance (ft)	187		292			394	
Travel Time (s)	4.3		9.9			0.6	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Adj. Flow (vph)	0	0	1385	341	8	1075	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	0	1726	0	0	1159	
Sign Control	Stop		Free			Free	
Intersection Summary							
Area Type: Ott	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization 76.2%	n 76.2%			ರ	J Level o	ICU Level of Service D	
Analysis Period (min) 15							

Lanes, Volumes, Timings Synchro 11 Report SLR Page 5

Sweetspot (111 High Ridge Road) 4: High Ridge Rd & N Driveway

2023 Combined Conditions PM Peak

																										ce A	
-	SBT	444	1126	1126	1900				0.91		0.999	5182	0.999	5182	8	240	5.5	96.0	1173		1203	Free				f Servi	
۶	SBL		53	59	1900	100	_	25	0.91			0		0				96.0	30		0					ICU Level of Service A	
•	NBR		18	18	1900	0	0		0.95			0		0				96.0	19		0					೦	
←	NBT	4₽	1314	1314	1900				0.95	0.998		3603		3603	30	228	5.2	96.0	1369		1388	Free					
1	WBR		19	19	1900	0	0		1.00			0		0				96.0	20		0						
>	WBL	>	7	7	1900	0	_	25	1.00	0.900	0.987	1688	0.987	1688	8	145	3.3	96.0	7		27	Stop		Other	_	ation 52.6%	
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Ideal Flow (vphpl)	Storage Length (ft)	Storage Lanes	Taper Length (ft)	Lane Util. Factor	Frt	Flt Protected	Satd. Flow (prot)	Flt Permitted	Satd. Flow (perm)	Link Speed (mph)	Link Distance (ft)	Travel Time (s)	Peak Hour Factor	Adj. Flow (vph)	Shared Lane Traffic (%)	Lane Group Flow (vph)	Sign Control	Intersection Summary	Area Type:	Control Type: Unsignalized	Intersection Capacity Utilization 52.6%	Analysis Period (min) 15

Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 4: High Ridge Rd & N Driveway

Intersection							
Int Delay, s/veh 0.	8.0						
Movement WBL		WBR	NBT	NBR	SBL	SBT	
igurations	>		4.			ብ ቀ ቀ	
Traffic Vol, veh/h	_	19	1314	9	53	1126	
Future Vol, veh/h	7	١.	1314	8	59	1126	
Conflicting Peds, #/hr		0	0	0	0	0	
Sign Control Stop			Free	Free	Free	Free	
RT Channelized		None	7	None	1	None	
	0	,	٠	•	100		
Veh in Median Storage, #	0	·	0	٠	٠	0	
	0		0	٠	٠	0	
	96	96	96	96	96	98	
cles, %	0 1		0	0 9	0 8	0	
MVmt Flow	_	-	6051	20	30	11/3	
≥		Ma	Major1	2	Major2		
. All		694	0	0	1388	0	
_	တ	ř	٠	r.	•		
			٠	٠	٠		
w		6.9	÷	1	4.1	·	
	5.8		٠	٠	٠		
₃ 2		ï	٠	٠	•		
က		3.3	٠	٠	2.5		
neuver		330	٠	٠	200		
	199		٠	٠	٠		
Stage 2 528	<u>∞</u>	ï	٠	٠	1		
			٠	٠			
		330	٠	٠	200		
neuver	29		٠	٠	٠		
Stage 1 199	6	ï	٠	٠	1		
Stage 2 43	22		٠	٠	٠		
Approach WB	മ		æ		SB		
HCM Control Delay, s 30.1	τ.		0		_		
	۵						
Minor Lane/Major Mvmt	Z	NBT	NBRWBLn1	BLn1	SBL	SBT	
Capacity (veh/h)			٠	170	200		
HCM Lane V/C Ratio			'	0.159	90.0		
HCM Control Delay (s)			٠	30.1	12.7	0.7	
HCM Lane LOS			٠	□	ш	V	
HCM 95th %tile Q(veh)		ï	÷	9.0	0.2	·	

Synchro 11 Report Page 7 HCM 6th TWSC SLR

Sweetspot (111 Higl 6: Halpin Ave & N D

2023 Combined Conditions PM Peak

2023 Combined Conditions	PM Peak
High Ridge Road)	N Driveway

	4	<i>></i>	•	←	→	*	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	#			4			
Traffic Volume (vph)	3	0	15	393	0	0	
Future Volume (vph)	33	0	15	393	0	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1:00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor							
Ft							
Flt Protected	0.950			0.998			
Satd. Flow (prot)	1805	0	0	1896	0	0	
Flt Permitted	0.950			0.998			
Satd. Flow (perm)	1805	0	0	1896	0	0	
Link Speed (mph)	೫			30	30		
Link Distance (ft)	134			358	230		
Travel Time (s)	3.0			8.1	5.2		
Confl. Peds. (#/hr)		-	-			_	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	
Adj. Flow (vph)	ਲ	0	16	432	0	0	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	¥	0	0	448	0	0	
Sign Control	Stop			Free	Stop		
Intersection Summary							
Area Type: (Other						
Control Type: Unsignalized							
Intersection Capacity Utilization 38.5%	ion 38.5%			⊇	U Level of	ICU Level of Service A	
Analysis Dariod (min) 15							

Analysis Period (min) 15

Synchro 11 Report Page 8 Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 6: Halpin Ave & N Driveway

2023 Combined Conditions PM Peak

## CEBL EBR NBL	1.1 EEL EBR NBL NBT SBT SE 31 0 15 393 0 13 0 15 393 0 14 0 15 393 0 16 0 1 1 0 0 17 0 15 393 0 18 0 1 1 1 0 0 18 0 1 1 1 0 0 19 0 1 1 1 91 91 91 19 0 1 91 91 91 91 10 0 0 0 0 34 0 16 432 0 464 - 1 1 0 464 - 4.1 - 0 544 - 4.1 - 0 559 0 1635 - 0 559 0 1635 - 0 559 0 1635 - 0 560 0 1635 - 0 570 0 - 0 58 12 0 0 63 0 1635 - 0 63 0 1635 - 0 63 0 1635 - 0 63 0 1635 - 0 63 0 1635 - 0 63 0 1635 - 0 64 0 0 0 0 70 0 0 0 80 0 1635 -								
She She NBL NBT SBT SBT 31	## NBL NBT SBT SET SET SET SET SET SET SET SET SET SE		- -						
No.	99, # 15 393 0 0 1				NBL	NBT		SBR	
31 0 15 393 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31 0 15 383 0 1 1 1 393 0 1 1 1 393 0 1 1 1 393 0 1 1 1 393 0 1 1 1 393 0 1 1 1 393 0 1 1 1 393 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lane Configurations	r			4			
Minor Signature Free Stop Stop Stop Stop Stop Stop Stop Stop	Minor September 15 393 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		31	0	15	393	0	٥	
Pir 0 1 1 0 0 0 1	Stop Stop Stop Stop Stop Stop Stop Stop		31	0	15	393	0	٥	
Stop Stop Free Free Stop Stop Stop None - No	Stop Stop Free Stop Stop	eds, #/hr			_			_	
99e,# 0 None - None - No 91 91 91 91 91 91 91 91 91 91 91 91 91 9	er 551 - 1633 - 636 - 63				Free			Stop	
Minor2 Major1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99e, # 0	RT Channelized	_	None	1	None	1	None	
Minor2 Major1 Minor2 Major1 464 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Page, # 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	•	•	•	'	·	
Minor Major 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Minor2 Major1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	٠	•	0	0		
Minor2 Major1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Minor2 Major1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	٠	1	0	0		
Minor2 Major1 465 - 1 0 0 0 0 1 1	Minor2 Major1 465 - 1 0 464 - 1 1 464 - 4.1 - 1 54		91	9	9	91	91	6	
Minor2 Major1 Minor2 Major1 464 - 1 - 1 644	Minor Majort 464 - 1		0	0	0	0	0	J	
Minor2 Major1 465 - 1 464 644 - 4.1 644 - 4.1 5.4 - 2.2 3.5 - 2.2 8.55 0 1835 637 0 - 637 637 0 - 637 636 636 8 12 0.3 B MM NBL NBTEB Nmt NBL NBTEB (c) 0.011 - 0.0 (s) 7.2 0 0 - (e) A A A	Minor2 Major1 465 - 1 464		34	0	16	432	0	J	
Minor Majort 1 465 - 1 464 - 4.1 64 - 4.1 5.4 - 2.2 3.5 - 2.2 8.59 0 1835 637 0 - 637 637 0 - 637 er 551 - 1633 er 551 - 1633 er 751 - 1633 er 752 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Minor Majort 1 465 - 1 464								
465	465 - 1 464 - 41 644 - 41 644 - 41 644 - 1 34 - 22 35 - 22 637 0 - 635 er 551 - 1633 er 551 - 1633 er 551 - 1633 er 561 - 0 636 636 er 561 - 0 637 - 0 1087 - 0 1098 - 0 109		or2	Σ	lajor1				
464	464		65		-	0			
464 41 6.4 41 3.5 2.2 3.5 2.2 6.37 . 0	464 41 6.4 - 41 8.4 - 22 3.5 - 22 7 559 0 1635 - 22 637 0 637 0 636 1633 er 551 - 1633 er 551 - 1633 er 751 - 1633 er 752 0 (s) 722 0 er 64 41 er 65 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 64 65 67 68 69 69 69 60 60 60 61 62 63 64 65 66 67 68 69 60 60 60 60 60 60 60 60 60	Stage 1	-	٠	•				
6.4 - 4.1 5.4 3.5 - 2.2 8.59 0 1635 6.37 0 6.37 0 6.36 6.36 6.36 6.36 6.37 0 6.38 6.39 6.30 6.	6.4 - 4.1 5.4		164	٠	٠	•			
637 0 1635 er 551 - 1633 er 551 - 1633 er 551 - 1633 er 551 636 636 636 636 637 0 0.3 hmt NBL NBTEB hmt NBL NBTEB lo 0.01 - 0.0 (s) 7.2 0 0.9 eh) 0	637 0 1633 er 559 0 1635 er 551 - 1633 er 561 - 1633 er 56		6.4	•	4.1	1			
5.4 - 2.2 8.55 0 1635 6.37 0 - 635 er 551 - 1633 er 551 - 636 8.36 - 636 8.31 0 0.3 B MMt NBL NBTEB hot 0.01 - 0.0 (s) 7.2 0 6.9 en 6.1 0 0.01 hot 0.01 - 0.0	5.4			٠	٠	٠			
35 - 22 559 0 1635 637 0 - 637 er 551 - 1633 er 551 - 636 636 636 8 12 0.3 B NB	35 - 22 637 0 - 635 er 551 - 1633 er 551 - 1633 er 551 - 1633 er 551 - 1633 er 551 - 1633 FB NB		5.4	•	•	1			
er 559 0 1635 637 0 - 637 0 - 636 - 1633 er 551 - 1633 er 552 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	er 559 0 1635 637 0 - 637 0 - 637 - 1633 er 551 - 1633 er 551 - 636 53 636 636 636 637 0 0 0 163		3.5		2.2	1			
er 551 - 1633 er 551 - 1633 er 551 - 1633 er 551 - 1 636 er 551 e	er 551 - 1633 er 551 - 1633 er 551 - 636 .		629		1635	٠			
er 551 - 1633 er 551 - 1633 er 551 636 636 12 0.3 B NBL NBTEB Nmt NBL NBTEB 163 72 0 (s) 72 0 en) 0	er 551 - 1633 er 551 - 1633 er 551 636 636 12 0.3 NBL NBTEB N			0	٠	١			
er 551 - 1633 er 551 - 1633 e. 636 636 s. 12 0.3 EB NBL NBTEB NML NBTEB NB	er 551 - 1633 er 551 - 1633 e. 51 - 636 e. 636 e. 72 e. 636 e. 72 e. 636 e. 72 e. 636 e. 72 e. 636 e. 636 e. 72 e. 636 e.		37	0	1	•			
Maneuver 551 - 1633 2 Maneuver 551	Maneuver 551 - 1633 Pe 1					٠			
Maneuver 551	Maneuver 551		221		1633	•			
Pe 2 636	Pe 2 636		52	٠	1	٠			
EB	EB			•	•	•			
EB	rol Delay, s 12 0.3 B 8 18 18 12 12 0.3 B 18 18 18 18 18 18 18 18 18 18 18 18 18		36	٠	٠	٠			
EB NB	rol Delay, s 12 0.3 B B B B B B B B B B B B B B B B B B B								
12 0.3 B	12 0.3 B		EB		8				
1633 - 1001 - 0.	NBL NBTEB 1633 - 001 - 0.0 7.2 0 A A A A D O -		12		0.3				
mt NBL NBTEB 1633 - 0.01 - 0.0	nt NBL NBTEB 1633 - 0.01 - 0.01 7.2 0 A A A A D O - 0.01 - 0.01 A A A A A A A A A A A A A A A A A A A		ш						
1633 - 0.01 - 0.	nt NBL NBTEB 1633 - 0.01 - 0.0								
1633 - 0.01 - 0.	1633 - 0.001 -	Minor Lane/Major Mvmt		MBL	NBTE	BLn1			
0.01 - 0.01 7.2 0 A A A - 0.00	0.01 - 0.07 - 0.	Capacity (veh/h)		1633		551			
lay (s) 7.2 0 A A A O(veh) 0 -	lay (s) 7.2 0 A A A A A A A A C(veh) 0 -	HCM Lane V/C Ratio		0.01		0.062			
O(veh)	Q(veh) 0 -	HCM Control Delay (s)		7.2	0	12			
0	0	HCM Lane LOS		A	A	В			
		HCM 95th %tile Q(veh)		0	1	0.2			

Synchro 11 Report Page 9 HCM 6th TWSC SLR

Sweetspot (111 High Ridge Road) 8: High Ridge Rd & Cross Rd

2023 Combined Conditions

	94																																													
	02																																													
	<u>8</u>																																													
•	SBR		4	4	1900	90	0	0 04	2			0		0	Yes				-	060	4		0																							
→	SBT	441	992	992	1900			0 04	1.00	0.999		5181		5181		ć	360	000	7.0	060	1102		1106	-	ě	52	> <	25	Ci+EX		0.0	0.0	0.0													
←	NBT	₩.	1425	1425	1900			0.95	1.00			3610	0.954	3444		ć	300	717 7 B	t O	0 90	1583		1585	0		0	>	<u>ب</u>			0.0	0.0	0.0													
•	NBL		2	2	1900	0	0 10	250	8			0		0					-	060	200		0	τ-	Left	07.0	0	200	CI-EX		0.0	0.0	0.0													
>	EBR		99	99	1900	0	0	100	2			0		0	Yes					0 90	73		0																							
1	EBL	>	14	14	1900	0 .	_ L	2 6	3	0.889	0.991	1674	0.991	1674		73	05 O	403	ų Š	060	16		68	4		370	P 4	၃ ဖ	O+E		0.0	0.0	0.0	9	ا ف	C+EX	•	0.0	<u>o</u> 4	2	ž Š	0	314	9	CI+EX	
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Ideal Flow (vphpl)	Storage Length (ft)	Storage Lanes	l aper Lengur (rr)	Ped Bike Factor	芒	Fit Protected	Satd. Flow (prot)	Flt Permitted	Satd. Flow (perm)	Right Tum on Red	Satd. Flow (RTOR)	Link Speed (mpn)	Travel Time (e)	Confl Pads (#/hr)	Peak Hour Eactor	Adi. Flow (vph)	Shared Lane Traffic (%)	Lane Group Flow (vph)	Number of Detectors	Detector Template	Leading Detector (ft)	Trailing Detector (it)	Detector 1 Size(#)	Detector 1 Type	Detector 1 Channel	Detector 1 Extend (s)	Detector 1 Queue (s)	Detector 1 Delay (s)	Detector 2 Position(ft)	Detector 2 Size(ft)	Detector 2 Type	Detector 2 Channel	Detector 2 Extend (s)	Detector 3 Position(II)	Defector 3 Size(II)	Detector 3 Type	Detector 3 Extend (s)	Detector 4 Position(ff)	Detector 4 Size(ft)	Detector 4 Type	Detector 4 Channel

Detector 4 Channel
Lanes, Volumes, Timings
SLR

2023 Combined Conditions PM Peak Sweetspot (111 High Ridge Road) 8: High Ridge Rd & Cross Rd

Lead Delime (s)	(s) 11.9 (s) 10.0 (s) (s) 11.9	custom 3 3 2 2 2 2 3 3 3 3 4 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 0 6 4 7 7 7 0 7 0 6 6 4 7 7 0 0 6 6 6 7 0 0 0 0 0 0 0 0 0 0 0 0			10 10 10 10 10 10 10 10 10 10 10 10 10 1
es 5 2 1 2 1 2 2 8 8 8 8 8 9 9 1	nd (s) es es (s) (s) (s) (s) (s) (s) (s) (s) (s) (s		3.0 7.0 15% 13.0 3.1 1.1,1 1.1,1		1.0 2.9.0 2.5.9.0 2.5.9.0 2.5.0 2.5.0 4.0 4.0 0.0 0.0 0.0 18.0 18.0 19.0 10.0
es 5 3 12 1 2 1 2 2 2 3 15 0 2 3 15 0 2 3	es es (s) (s) (s) (s) (s) (s) (s) (s) (s) (s		3.0 7.7 7.7 15% 13.0 3.0 1.1.1 1.1.1 Mir	O	1.0 29.0 25.0 25.0 25.0 4.0 4.0 6.0 None 18.0 10
es 5 3 23 12 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	ess ess (s) (s) (s) (s) (s) (s) (s) (s) (s) (3.0 7.0 7.0 1.15% 3.0 3.0 1.15 7.6e 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.1	O	1.0 29.0 29.0 25.0 25.0 4.0 0.0 0.0 None 18.0 10
Sample S	(\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$)		3.0 17.7 15% 13.0 3.3 1.1.1 1.1.5 Mir	o o	1.0 29.0 29.0 29.0 25.0 4.0 4.0 0.0 0.0 None 18.0 18.0
(s) 7.0 1.0 3.0 15.0 15.0 16.0 17.0 17.0 20.0 17.0 20.0 17.0 20.0 17.0 20.0 17.0 20.0 17.0 20.0 17.0 20.0 17.0 20.0 17.0 20.0 17.0 20.0 17.0 20.0 17.0 20.0 17.0 20.0 17.0 20.0 17.0 20.0 17.0 20.0 17.0 20.0 17.0 20.0 24.0 17.0 17.0 24.0 17.0 17.0 24.0 17.0 17.0 24.0 17.0 17.0 24.0 17.0 17.0 24.0 17.0 17.0 24.0 17.0 17.0 24.0 17.0 24.0 17.0 24.0 17.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24	(s) (s) (s) 23 24 (s) (s) (s) (s) (s) (s)		3.0 7.7 7.7 15% 13.0 3.3 1.1.1 1.1.1 Mir		1.0 29.0 25.9 25.0 25.0 4.0 4.0 0.0 0.0 None 18.0 18.0
(s) 7.0 1.0 3.0 15.0 15.0 15.0 17.0 20.0 17.0 17.0 17.0 20.0 17.0 17.0 17.0 20.0 17.0 17.0 17.0 20.0 17.0 20.0 17.0 20.0 17.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	(\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$)		3.0 7.7 7.0 15% 13.0 3.0 1.1.1 14.0 Mir	O	1.0 29.0 25.0 25.0 25.0 4.0 0.0 0.0 None 18.0 18.0
S	(\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$)		7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	o o	1.0 29.0 29.0 25.0 25.0 25.0 4.0 0.0 None 18.0 18.0
(s) 11.9 7.0 7.0 20.0 1.0 28.1 7.0 20.0 2.8.7% 6.1% 15.0 22.0 1.0 28.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0	(s) (s) 20 (s)		7 (7 (15%) (O	29.0 25.9 25.0 25.0 4.0 4.0 0.0 0.0 None 7.0 18.0
Sample S	nn (s) st (s) st (s) nize? on (s) t (s) t (s) t (s) t (s) t (s)		19% 13.0 3.0 1.1.0 Vee Y Yee 11.8	o o	25% 25.0 4.0 0.0 0.0 None 7.0 18.0
18	2) () () () () () () () () () () () () ()		15% 13.0 3.0.0 1.0 7 Per 7 Mir	O	25% 25.0 25.0 4.0 0.0 0.0 None 7.0 18.0
28.1 1.0 13.0 24.0 3.0 4.7 3.0 4.0 1.9 1.3 1.0 1.0 1.0 0.0 4.7 3.0 4.0 1.9 1.3 1.0 1.0 1.0 0.0 1.0 3.0 1.5 3.0 1.0 3.0 1.5 3.0 1.0 3.0 1.5 3.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.15 1.15 1.15 1.16 1.17 1.18 1.19 1.19 1.19 1.10 1.10 1.10 1.10 1.10			13.0 1.1.0 1.6 1.5 Min Min	o o	25.0 4.0 4.0 0.0 0.0 7.0 18.0
3.0 4.7 3.0 4.0 1.9 1.3 1.0 1.0 0.0 0.0 4.9 Lead Lead Lead Lead Lead Lead Ves Yes Yes Yes Yes Yes Yes Yes 1.0 1.0 3.0 1.5 3.0 1.0 3.0 4.8 0.64 0.25 0.35 12.7 1.16 2.0 6.0 0.0 1.18 0.0 0.0 1.18 0.0 0.0 1.19 0.0 0.0 1.10 0.0 0.0 1.10 0.0 0.0 1.10 0.0 0.0 1.11 0.0 0.0 0.0 1.12 0.0 0.0 0.0 1.13 0.0 0.0 0.0 1.14 0.0 0.0 0.0 1.15 0.0 0.0 0.			3.0 1.0 Lear Yee Mir	O	4.0 0.0 0.0 1.0 0.0 0.0 7.0 18.0
1.9 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			1.0 Lear Yee Mis	O	0.0 Lag Yes 3.0 None 7.0 18.0
9.00 4.99 Lead Lead Lag Vess Yes Yes Yes Yes Yes Yes Yes Yes Yes			Leac Yes 11,5 Min	O	Lag Yes 3.0 None 7.0 18.0
1.0			Leac Yes 11.5 Mir	O	Lag Yes 3.0 None 7.0 18.0
Lead Lead Lead Lead Lead Lead Lead Yes			Leac Yes 1.5 Mir	O	Lag Yes 3.0 None 7.0 18.0
7 Fes			M. T. William	O	Yes 3.0 None 7.0 18.0
1.0 3.0 1.5 3.0 None Max Min C-Min Nin Nin C-Min Nin Nin C-Min Nin Nin Nin C-Min Nin Nin Nin Nin Nin Nin Nin Nin Nin N			5 45 M	O	3.0 None 7.0 18.0
None Max Min C-Min P 20.0 55.4 73.3 0.17 0.84 0.64 0.17 0.95 0.33 13.6 23.5 12.7 0.0 0.0 0.0 13.6 23.5 12.7 B C B C B C B C C C C C C C C C C C C			S. Mir	ර	None 7.0 18.0
e (s) 11 Malk (s) 12 Malk (s) 13 Malk (s) 14 Malk (s) 15 Malk (s) 16 Malk (s) 17 Malk (s) 18 Malk (s) 18 Malk (s) 19 Malk (s)	e (s) it Walk (s) n Calls (#ftr) Sreen (s) g/C Ratio elay Alay y y				7.0 18.0 10
a to the leaf of t	in this is a second of the control o	9			18.0
Int Value (s) To calls (#fm)	nt Walk (s) nt Calls (#hr) nt Calls (#hr) g/C Ratio elay slay y y belay	9			18.0
Calls (#/hr) Calls (#/hr) 564 73.3 Steen (s) 20.0 56.4 73.3 9C Ratio 0.17 0.48 0.64 9C Ratio 0.15 0.95 0.33 9C Ratio 0.25 0.95 0.33 136 23.5 12.7 Delay 13.6 23.5 12.7 Dalay 13.6 2.5 12.7 LOS B C B Noghl 50th (ft) 10 65 107 Again 50th (ft) 51 #1014 283 Again 50th (ft) 51 #1014 283 Again 50th (ft) 329 132 280 Losp Reduction 0 0 0 Casp Reduction 0 0 0 Veralic 0.19 0.95 0.34 Ans Summary 32 32 0.95 0.34 Ans Summary 32 32 0.95 0.34 Ans Summar	n Calls (#/hr) Sreen (\$) g/C Ratio elay slay yy	w 0 0			10
Sizen (s) 20.0 55.4 90 Ratio 0.17 0.48 91 Ratio 0.17 0.48 92 Ratio 0.17 0.48 93 Ratio 0.25 0.95 94 13.6 23.5 95 Ratio 13.2 13.2 95 Ratio 13.2 13.2 95 Ratio 0.19 0.35 96 Ratio 0.19 0.35 97 Ratio 0.19 0.35 98 Ratio 0.19 0.35 98 Ratio 0.19 0.35 99 Ratio 0.19 0.35 90 Ratio 0.45 90 Ratio 0.45 90 Ratio 0.45 90 Ratio 0.48 90 Ratio 0.45 9	Green (s) g/C Ratio elay slay sy	600			
grC Ratio 0.17 0.48 elay 0.25 0.95 elay 1.36 0.35 3.95 slay 0.0 0.0 0.0 3.7 13.6 2.35 LOS B C C coght 50h (ft) 10 65 ength 50h (ft) 1329 0.95 ength 50h (ft) 1329 0.95 en Summary 0.19	g/C Ratio elay slay sly belay	0			
0.25 0.95	elay slay sly Delay	0			
elay 13.6 23.5 yy 13.6 23.5 Delay 0.0 0.0 Delay 13.6 23.5 Delay 13.6 23.5 Cap Cap Reduction 0 Cap Reductin 1 Cap Reductin 0 Offer Ratio 0 Offer Ratio 0 Offer Ratio 0 Summary 0 Sum	elay blay 3y Delay				
13.6 23.5 13.6 23.5 13.6 23.5 13.6 23.5 10 65 51 #1014 32.9 13.2 464 1660 0 0 0 0 0 0.19 0.95 Other classe 2NBSB, Start of Yellow		2			
13.6 23.5 13.6 23.5 13.6 23.5 14.6 65 10 65 10 14 13.2 46.4 1660 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
13.6 23.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10		2			
13.6 23.5 B C C C C C C C C C C C C C C C C C C C					
B C 10 65 51 #1014 329 #1014 132 464 1660 0 0 0 0 0.19 0.95 Other		6			
10 #1014 329 #1014 132 464 1660 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0		'			
10 #1014 329 132 464 1660 3 0 0 0 0.19 0.35 (Other					
51 #1014 329 132 464 1660 3 0 0 0 0 0 0 0.19 0.95 0 Other Other					
329 132 464 1660 0 0 0 0 0 0 0.19 0.95 Other		#1(
464 1660 0 0 0 0 1 0 0 0 0 19 0.95 Other o phase 2:NBSB, Start of Yellow		•			
464 1680 0 0 0 0 0.19 0.95 Other 0 phase 2:NBSB, Start of Yellow	irn Bay Length (ft)				
0 0 0 0 0.19 0.95 Other o phase 2:NBSB, Start of Yellow		#			
1 0 0 0.19 0.95 0.00ther					
0 0 0 0 0 0.19 0.95 0.095 0.00 0.00 0.00 0.00 0.00 0.					
0.19 0.95 Other ophase 2.NBSB, Start of Yellow					
Other to phase 2.NBSB, Start of Yellow ridnated		0			
lersection Summary ear Type: Autacide Length: 115 Start of Yellow Taker O (10%), Referenced to phase 2:NBSB, Start of Yellow Thrins Cycle Type Thring Cycle Type Thring Cycle Type Thring Type Actualed-Coordinated					
ea Type: Vole Length: 15 Lute de Cycle Length: 115 Ifset D (0%), Referenced to phase 2NBSB, Start of Yellow Intral Cycle Type Actualed Cycle Coordinated	tersection Summary				
Vec Engyli. 115 Tubaled (20%), Referenced to phase 2NBSB, Start of Yellow Tubal Cycle 1 Tubal Cycle 2000 (2000)					
Statt of (%), Referenced to phase 2.NBSB, Start of Yellow shural Cycle: 130 printo Trove: Actuated-Coordinated	triated Cycle Length: 115				
ibaci o (u/m), resentacio to prises exusos, oran on removi atrial Cycle: 130 printo Tivoe: Actuated-Coordinated	frot 0 /00/1 Deferenced to phase 2:NBSB	Ctart of Vallow			
atural cycle: 130 ontrol Twoe: Actuated-Coordinated	ISEL 0 (U%), Releienced to priese zurdou.	, Start of Tellow			
ontrol Type: Actuated-Coordinated	atural Cycle: 130				
	ontrol Type: Actuated-Coordinated				

Synchro 11 Report Page 11 Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 8: High Ridge Rd & Cross Rd

2023 Combined Conditions PM Peak

Intersection LOS: B ICU Level of Service A Intersection Signal Delay: 18.9 Intersection Capacity Utilization 54.9% ICU I Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 8: High Ridge Rd & Cross Rd

#1 #8

Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 1: High Ridge Rd & Oaklawn Ave

2023 Combined Conditions Saturday Midday Peak

33 33 33 190 0.99 0.99 0.99 337 337 337 0.99 6.6 6.6 6.7 9.9 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37	71 71 71 1900 0.95 0 No	↑↑ 916		<u>, -</u>	**				
1000000	71 71 1900 0.95 0 0 No	916			-				
7 0 0 6 0 6	71 1900 0.95 0 0 No		_	128	917				
	0.95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	916	7	126	917				
	0.95 0 0 N	1900	1900	1900	1900				
	0 0 0	0.95	0.95	1.00	0.95				
	0 0 0	0.999							
	0 0 %			0.950					
	0 %	3536	0	1770	3539				
,	o 8			0.140					
	õ	3536	0	261	3539				
			Yes						
		_							
		90			8				
		240			212				
		5.5			4.8				
	0.94	0.94	0.94	0.94	0.94				
	9/	974	7	<u>\$</u>	926				
	0	981	0	78	926				
Villaber of Defectors		_		c	_				
Detector Template									
pading Detector (#) 10		25		30	_				
'		3 -		3 <	1,0				
á		o c		0 0	2 5				
		> 5		o (9				
í.		5 5		0 .	0 .				
Detector I Type CI+EX		<u>-</u>		<u> </u>	Σ±5				
		c		0	c				
		0.0		0.0	0.0				
		0.0		0.0	0.0				
0.		0.0		0.0	0.0				
ո(ft)				15					
Detector 2 Size(ft) 6				9					
Detector 2 Type CI+Ex				CI+EX					
Detector 2 Channel									
Detector 2 Extend (s) 0.0				0.0					
Detector 3 Position(ft)				54					
Detector 3 Size(ft)				9					
Detector 3 Type				CI+EX					
Detector 3 Channel									
Detector 3 Extend (s)				0.0					
Turn Type Prot		Ν	_	D.P+P	Ν				
Protected Phases 5		2		13	123	_	က	4	
Permitted Phases				5					
Detector Phase 5		2		13	123				
Switch Phase									
Minimum Initial (s) 7.0		15.0				3.0	1.0	1.0	
Minimum Split (s) 11.9		20.0				7.0	7.0	29.0	
otal Split (s) 24.0		26.0				14.0	7.0	29.0	
otal Split (%) 24.0%		26.0%				14%	%/	29%	

Sweetspot (111 High Ridge Road) 1: High Ridge Rd & Oaklawn Ave

2023 Combined Conditions Saturday Midday Peak

Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 2: Halpin Ave & Oaklawn Ave

2023 Combined Conditions Saturday Midday Peak

Lane Group EBL EBT EBR Lane Configurations 4 0 134 0 Traffic Volume (vph) 2 134 0 134 0 Ideal Flow (vphp) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 10	WBL			_	-	-			
2 134 2 134 2 134 1900 1900 1.00 1.00 1.00 0.999 0 1861 0 999 0 1861 0 0.99 220 260 2 240 6 6 0 148		WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
2 134 1900 1900 1.00 1.00 0.999 0 1861 0 999 0 299 290 290 290 290 290 290 0 148		\$			4			4	
1900 1000 1.	0	362	9	32	2	293	2	0	2
1900 1900 1.00 1.00 1.00 1.00 1.00 1.00	0	362	9	32	2	293	S)	0	2
1.00 1.00 0.999 0 1861 0 999 0 299 280 6.6 1 1 0 92 2 146	1900	1900	1900	1900	1900	1900	1900	1900	1900
0.999 0 1861 0.999 0 0.999 2.90 2.90 2.90 2.90 2.90 2.90 2.90	1.00	1:00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.999 0 1861 0.999 0 1861 30 30 2.90 6.6 1 1 0.92 0.92 2 146									
0.999 0.1861 0.999 0.1861 30 2.90 6.6 6.6 0.92 2.146		966.0			0.880			0.961	
0 1861 0.999 0.999 0.999 290 6.6 1 1 6.6 290 290 2 0.92 2 146					0.995			996.0	
0.999 0 1861 30 2.90 1 6.6 0.92 0.92 2 146 0 148	0	1859	0	0	1631	0	0	1729	0
0 1861 30 290 6.6 1 6.6 0.92 0.92 2 146					0.995			996.0	
30 290 6.6 0.92 0.92 2 146	0	1859	0	0	1631	0	0	1729	0
290 6.6 0.92 0.92 2 146		8			30			30	
6.6 1 0.92 0.92 2 146 0 148		240			230			214	
1 0.92 0.92 2 146 0 148		5.5			5.2			4.9	
0.92 0.92 2 146 0 148			-						
2 146 0 148	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
0 148	0	393	7	32	2	318	2	0	2
0 148									
	0	400	0	0	358	0	0	7	0
Sign Control Free		Free			Stop			Stop	
Intersection Summary									
Area Type: Other									
Control Type: Unsignalized									
Intersection Capacity Utilization 45.8%	D D	ICU Level of Service A	Service A	_					
Analysis Period (min) 15									

Synchro 11 Report Page 3

Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 2: Halpin Ave & Oaklawn Ave

2023 Combined Conditions Saturday Midday Peak

EBI EBR WBI WBT WBR	ntersection													
Feb. EBT EBR WBL WBT NBT NBT NBT NBT NBT SBT	t Delay, s/veh	5.3												
h	ovement	EBL	EBT	EBR	WBL	WBT				NBR	SBL	SBT	SBR	
Free Free Free Free Free Free Sup Stop Stop Stop Stop Stop Stop Stop Sto	ane Configurations		₩			÷			4			4		
h 2 134 0 0 362 6 32 5 293 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	raffic Vol, veh/h	2	134	0	0	362	9	32	2	293	2	0	2	
Free Free Free Free Free Free Free Fre	uture Vol, veh/h	2	134	0	0	362	9	32	2	293	വ	0	5	
Free Free Free Free Free Free Sup Stop Stop Stop Stop Stop Stop Stop Sto	Conflicting Peds, #/hr	_	0		0	0	_	0	0	0	0	0	0	
None	Sign Control	Free	Free		Free		Free	Stop	Stop	Stop	Stop	Stop	Stop	
binage, #	T Channelized	•	1	None	1	1	None	1	1	None	1	1	None	
14 - 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0	Storage Length	•	•	٠	٠	٠	٠	٠	٠	٠	•	•		
1	eh in Median Storag	# 6	0	•	•	0	•	•	0	•	1	0	٠	
Majort Majore M	Grade, %		0			0		'	0	'	'	0		
1	Peak Hour Factor	92	92	92	92	35	35	92	35	92	92	92	35	
Major1 Major2 Minor1 Minor1 Minor2 4.12 150 150 - 398 398 398 4.12 150 150 - 398 398 398 4.12 150 150 - 312 150 4.12 150 150 - 312 150 4.12 150 150 - 312 150 4.12 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5	Heavy Vehides, %	2	7	2	7	5	7	5	5	7	7	7	5	
Height Major Minor Minor Minor 401	Mvmt Flow	2	146	0	0	393	7	35	2	318	2	0	2	
Major Minor Minor 401 0 - - 0 548 551 146 710 548 - - - - 150 146 710 548 38 398 398 - - - - - 150 - 312 150 - 312 150 - 312 150 - 312 150 - 312 150 - 312 150 - 312 150 - 312 150 - 312 150 - 312 150 -														
401 0 0 548 551 146 710 548		Major1		2	lajor2		Z	linor1		~	Ainor2			
4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12	Conflicting Flow All	401	0		١.		0	548	551	146	710	248	398	
4.12	Stage 1	•	1	•	•	•	•	150	150	•	398	398		
4.12 7.12 6.52 7.12 6.52 7.12 6.52 - 6.12 5.52 6.12 5.52 - 6.12 5.52 2.218 3.518 4.018 3.318 3.518 4.018 1158 - 0 0 0 447 442 901 3.48 444 0 0 0 628 601 - 628 601 1157 628 601 - 628 602 628 601 - 628 443 628 601 - 628 602 851 771 - 626 602 861 771 - 626 602 626 600 - 448 771 626 600 - 448 771 13 86 628 600 - 448 771 13 86 628 600 - 448 771 13 88 628 600 - 448 771 628 600 - 448 771 628 600 - 448 771 628 600 - 448 771 628 600 - 448 771 628 600 - 448 771 628 600 - 448 771 628 600 - 448 771 628 600 448 771 628 600 448 771 628 600 448 771 628 600 448 771 628 600 448 771 628 600 448 771	Stage 2	'	'	'	'		'	398	401		312	120		
2.218	ritical Hdwy	4.12	•	•	•	•	•	7.12	6.52	6.22	7.12	6.52	6.22	
2218 612 552 - 612 552 218 612 552 - 612 552 218 612 552 - 612 552 218 612 552 - 612 552 218 612 652 - 612 552 218 612 601 - 628 603 219 773 628 601 - 628 603 210 628 601 - 628 603 21157 628 601 - 628 603 21157 445 441 901 222 443 21 445 441 901 222 443 21 445 441 901 222 443 21 626 600 - 448 771 22 443 771 24 602 626 600 - 448 771 25 602 626 600 - 448 771 27 7 8 8 157 626 600 - 448 771 28 8 157 626 600 - 448 771 28 8 157 626 600 - 448 771 29 8 157 626 600 - 448 771 20 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ritical Hdwy Stg 1	•	•	٠	٠	٠	٠	6.12	5.52	٠	6.12	5.52		
158	critical Hdwy Stg 2	1	•	1	1	1	1	6.12			6.12		ì	
1158	ollow-up Hdwy	2.218	1	•	1	1	1	3.518			3.518		3.318	
1157 0 0 0 - 0 628 601 - 699 773 1157 0 0 0 - 0 628 601 - 699 773 1157 0 0 0 - 0 628 601 - 699 773 1157 - 0 0 0 - 0 628 601 - 699 773 1157 - 0 0 0 0 - 0 628 601 - 699 773 1158 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ot Cap-1 Maneuver	1158		0	0	•	٠	447	442	901	348	444	652	
1157	Stage 1	•	١	0	0	٠	٠	853	773	•	628	603		
1157 445 441 901 222 443 66 445 441 901 222 443 445 441 - 222 443 626 600 - 448 771 EB	Stage 2	•	•	0	0	•	•	628	601	•	669	773		
1157 445	latoon blocked, %		'			٠	•							
1	Nov Cap-1 Maneuver	_	•	1	1	1	1	445	441	90	222	443	651	
EB WB NB NB SB T71 - 626 602 - 448 771 - 626 600 - 448 771 - 626 600 - 448 771 - 626 600 - 448 771 - 626 600 - 448 771 - 626 600 - 448 771 - 626 600 - 448 771 - 626 600 - 448 771 - 626 600 - 448 771 - 626 600 - 448 771 - 626 600 - 448 600 - 626 6	lov Cap-2 Maneuver	•	•	•	٠	•	٠	445	441	•	222	443		
EB WB NB SB 0.1 0 13 186 TH NBL11 EBL EBT WBT WBR SBLn1 808 1157 273 0.444 0.02 0.028 13 8.1 0 - 18.6 B A A - C	Stage 1	•	•	•	•	•	•	821	171	•	929	602		
0.1 0 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Stage 2	'	•	'	٠	٠	٠	979	009	•	448	11		
EB WB NB 0.1 0 13 1 B B B B B B B B B B B B B B B B B B														
0.1 0 13 B B II NBLn1 EBL EBT WBT WBR SBLn1 808 1157 273 0.444 0.002 0.028 13 8.1 0 - 18.6 B A A - C	Approach	EB			WB			8			SB			
MBLn1 EBL EBT WBT WBRSBLn1 808 1157 - 273 0.444 0.002 - 0.028 13 8.1 0 - 18.6 B A A - C	HCM Control Delay, s				0			13			18.6			
MBLn1 EBL EBT WBT WBRSE 808 1157 0.444 0.002 0 13 8.1 0 0 2.3 0 0 10 10 10 10 10 10 10 10 10 10 10 10 1	HCM LOS							ш			ပ			
## NBLn1 EBL EBT WBT WBRSE 808 1157														
808 1157 0.444 0.002 0 13 8.1 0 0 8 A A 0 14 8.1 0 0 14 9.1 14	/linor Lane/Major Mvr		JBLn1	EBL	EBT		WBR S	BLn1						
0.444 0.002 13 8.1 0	Sapacity (veh/h)		808	1157	٠	•	٠	273						
13 8.1 0	ICM Lane V/C Ratio		0.444	0.002				0.028						
B A A	ICM Control Delay (s	_	13	8.1	0	•	٠	18.6						
	ICM Lane LOS		М	⋖	4	•	٠	ပ						
	HCM 95th %tile Q(veh)	-	2.3	0	•	•	•	0.1						

Synchro 11 Report Page 4 HCM 6th TWSC SLR

Sweetspot (111 High Ridge Road) 2023 Combined Conditions 3: High Ridge Rd & Halpin Ave

	\	4	•	•	1		
	•	,	-		k.	•	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations			₩.			444	
Traffic Volume (vph)	0	0	918	255	61	1167	
Future Volume (vph)	0	0	918	255	61	1167	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	0		0	75		
Storage Lanes	0	0		0	_		
Taper Length (ft)	52				52		
Lane Util. Factor	1.00	1.00	0.95	0.95	0.91	0.91	
Frt			296.0				
Fit Protected						866.0	
Satd. Flow (prot)	0	0	3422	0	0	5075	
Flt Permitted						0.998	
Satd. Flow (perm)	0	0	3422	0	0	5075	
Link Speed (mph)	8		8			30	
Link Distance (ft)	187		292			394	
Travel Time (s)	4.3		9.9			0.6	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Adj. Flow (vph)	0	0	286	274	99	1255	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	0	1261	0	0	1321	
Sign Control	Stop		Free			Free	
Intersection Summary							
Area Type: Ot	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization 64.0%	on 64.0%			D D	J Level o	ICU Level of Service B	
Analysis Period (min) 15							

Synchro 11 Report Page 5

Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 4: High Ridge Rd & N Driveway

2023 Combined Conditions
Saturday Midday Peak

	•	4	←	•	۶	→	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	>		4₽			स⁴ै	
Traffic Volume (vph)	7	24	899	-	31	1222	
Future Volume (vph)	7	24	888	7	31	1222	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	0		0	100		
Storage Lanes	_	0		0	τ-		
Taper Length (ft)	52				22		
Lane Util. Factor	1:00	1.00	0.95	0.95	0.91	0.91	
T.	0.894		0.998				
Fit Protected	0.990					0.999	
Satd. Flow (prot)	1649	0	3532	0	0	5080	
Flt Permitted	0.990					0.999	
Satd. Flow (perm)	1649	0	3532	0	0	5080	
Link Speed (mph)	9		30			30	
Link Distance (ft)	145		228			240	
Travel Time (s)	3.3		5.2			5.5	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Adj. Flow (vph)	7	56	926	12	33	1300	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	33	0	896	0	0	1333	
Sign Control	Stop		Free			Free	
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization 55.9%	ation 55.9%			೨	U Level o	ICU Level of Service B	
Analysis Period (min) 15							

Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 4: High Ridge Rd & N Driveway

2023 Combined Conditions	Saturday Midday Peak	
11 High Ridge Road)	e Rd & N Driveway	

	SBT	₽₩₩	1222	1222		Free	None		0	0	ਲ	2	1300		0	·								·									SBT			0.5	⋖	
	SBL		31	31	0	Free	1	100	•		94	2	33	Major2	896	1	'	4.14	•	•	2.22	707	•	1		707	•	1	'	SB	0.7		SBL	707	0.047	10.3	ω ;	0.1
	NBR		=	Ξ	0	Free	None	•	1	•	쫑	7	12	_	0	1	'	1	'	1	•	1	•	1	1	•	•	1	•				/BLn1	281	0.117	19.5	O	0.4
	NBT	₽	899	88	0	Free	1	'	0	0	94	7	926	Major1	0	1	•	1	•	•	•	1	•	1	1	•	•	•	•	B	0		NBRWBLn1	•	•	1	•	•
	WBR		74	75	0	Stop	None	•	1	٠	쫑	5	56	2	484	1	'	6.94	•	1	3.32	529	١	٠		223	٠	•	٠				NBT	•	٠	•	٠	•
0.7	WBL	>	7	7	0	Stop	1	0	0	0	94	7	7	Minor1	1548	962	286	6.29	5.84	6.04	3.67	130	323	487		108	108	323	402	WB	19.5	ပ						
Int Delay, s/veh	Movement	Lane Configurations	Traffic Vol, veh/h	Future Vol, veh/h	Conflicting Peds, #/hr	Sign Control	RT Channelized	Storage Length	Veh in Median Storage,	Grade, %	Peak Hour Factor	Heavy Vehicles, %	Mvmt Flow	Major/Minor M	w All	Stage 1	Stage 2	Critical Hdwy	Critical Hdwy Stg 1	Critical Hdwy Stg 2	Follow-up Hdwy	Pot Cap-1 Maneuver	Stage 1	Stage 2	Platoon blocked, %	Mov Cap-1 Maneuver	Mov Cap-2 Maneuver	Stage 1	Stage 2	Approach	HCM Control Delay, s	HCM LOS	Minor Lane/Major Mvmt	Capacity (veh/h)	HCM Lane V/C Ratio	HCM Control Delay (s)	HCM Lane LOS	HCM 95th %tile Q(veh)

Synchro 11 Report Page 7 HCM 6th TWSC SLR

Sweetspot (111 High Ridge Road) 6: Halpin Ave & N Driveway

2023 Combined Conditions Saturday Midday Peak

																								V a	
•	SBR		0	0	1900	1.00				0		0				2	0.87	0		0				of Servio	
→	SBT		0	0	1900	1.00				0		0	30	230	5.2		0.87	0		0	Stop			ICU Level of Service A	
←	NBT	÷	314	314	1900	1.00			0.997	1857	0.997	1857	30	358	8.1		0.87	361		383	Free			2	
•	NBL		19	19	1900	1.00				0		0				2	0.87	22		0					
<i>></i>	EBR		0	0	1900	1.00				0		0				-	0.87	0		0					
4	EBL	je.	ਲ	怒	1900	1.00			0.950	1770	0.950	1770	9	134	3.0		0.87	39		39	Stop		Other	d zation 34.6%	
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Ideal Flow (vphpl)	Lane Util. Factor	Ped Bike Factor	Fr	Fit Protected	Satd. Flow (prot)	Fit Permitted	Satd. Flow (perm)	Link Speed (mph)	Link Distance (ft)	Travel Time (s)	Confl. Peds. (#/hr)	Peak Hour Factor	Adj. Flow (vph)	Shared Lane Traffic (%)	Lane Group Flow (vph)	Sign Control	Intersection Summary	Area Type:	Control Type: Unsignalized Intersection Capacity Utilization 34.6%	Analysis Period (min) 15

Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 6: Halpin Ave & N Driveway

2023 Combined Conditions Saturday Midday Peak

Movement EBL EBR NBL NBT SBT SBR Leve Configurations 34 0 19 314 0 0 Leve Configurations 34 0 19 314 0 0 Confiding Peds #fh	Intersection							
ions FBL EBR NBL NBT SBT SFT SFT SFT SFT SFT SFT SFT SFT SFT SF		4.						
ions in the state of the state		EBL	EBR	NBL	NBT	SBT	SBR	
h 34 0 19 314 0 h 74 1 0 314 0 h 75 1 0 19 314 0 h 75 1 0 1 0 314 0 h 75 1 0 1 0 0 0 h 75 1 0 1 0 0 0 h 75 1 0 h 75 1 0 0 h 75 1 0 h	Lane Configurations	r			÷			
h 34 0 19 314 0 Sup Stop Stop Stop Stop Stop Stop Stop Sto	Traffic Vol, veh/h	34	0	19	314	0	0	
Stop	Future Vol, veh/h	34	0	19	314	0	0	
Stop Stop Free Stop Sing Signage, # 0 - None	Conflicting Peds, #/hr		~	2	0		7	
Storage, # 0 - None - None - Note - N			Stop	Free	Free		Stop	
Ninorge, # 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			None	•	None		None	
Storage, # 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Storage Length		•	•		٠		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Veh in Median Storage, #		1	1		0	٠	
National Properties	Grade, %	0	٠	٠	0	0	٠	
2 2 2 2 2 2 1	Peak Hour Factor	87	87	87	87	87	87	
39 0 22 361 0 Innor2	Heavy Vehicles, %	2	2	7	2	7	5	
Major1	Mvmt Flow	33	0	22	361	0	0	
Hinor2 Major1 2 407 - 2 405 412 405 412 642 - 412 642 - 412 6542 - 2218 600 0 1620 673 0 - 673 0 - 672 - 672 - 672 - 672 - 672 - 672 - 672 - 672 - 672 - 672 - 673 0 - 0.014 - 0.06 673 0 - 0.014 - 0.06 673 0 - 0.014 - 0.06 673 0 - 0.014 - 0.06 673 0 - 0.014 - 0.06 673 0 - 0.014 - 0.06 673 0 - 0.014 - 0.06 673 0 - 0.014 - 0.06 673 0 - 0.014 - 0.06 673 0 - 0.014 - 0.06 673 0 - 0.014 0 - 0								
407 - 2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4		nor2	2	/ajor1				
2		407		2	0			
642 - 412 542 542 542	Stage 1	2	1	•	•			
6.42 - 4.12 5.42		405	٠	٠	'			
3542		6.42	•	4.12	•			
3.518 - 2.218 3.558 - 2.218 673 0 - 673 587 - 1617 587 - 672 672 - 672 11.6 0.44 11.6 0.014 11.6 0.014 17.3 0 17.3 0 1.4 0.014 1.5 0.014 1.6 0.014			٠	'	٠			
3518 - 2218 600 0 1620 673 0 - 673 587 - 1617 587 - 1617 672 - 672 11.6 0.44 11.6 0.014 17.3 0 0 18.4 0.014 18.4 0.014 18.4 0.014 19.5 0.014 19.5 0.014 10		5.42	1	'	•			
600 0 1620 673 0 - 672 672 - 1617 672 672 672 672 887 672 672 672 11.6 0.44 1617 - 0.014 - 673 7.3 0 0 - 673	(,,	.518		2.218	٠			
673 0 - 687 - 1617 - 16		009	0	1620	•			
673 0 - 673 587 - 1617 672 - 672 - 672 - 674 11.6 0.44 1617 - 6014 - 601		'	0	'	'			
587 - 1617 587 - 1617 672 672 EB NB 11.6 0.44 60.14 - 0.014 - 0.014 -		673	0	1	1			
587 - 1617 - 672 672 672 672 672 672 672 672 672 672 672 673 - 6 673 - 6 673 - 6 673 - 6 673 - 6 673 - 6 673 - 6 673 - 6 673 - 6 673 - 6 673 -					٠			
672 672		287	1	1617	•			
EB NB 11.6 0.4 B NBL NBT 1617 - 0.014		287	•	•	٠			
EB NB 11.6 0.4 PB 1617 - 0.014		•	1	•	1			
11.6 0.4 PBT 11.6 0.4 PBT 11.6 0.4 PBT 16.17 - 0.014 - 7.3 0 PBT 16.17 - 0.014		672	٠	٠	٠			
11.6 0.4 B NB N								
NBL NBT 11.6 0.4 NBT 16.7 - 0.014 - 0.	Approach	8		2				
NBL NBT 1617 - 0.014 - 7.3 0 A A A A	rol Delay, s	11.6		0.4				
1617 - 1617 - 0.014 - 7.3 0 A A A A A O - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	HCM LOS	m						
NBL NBT 1617 - 0.014 - 7.3 0 A A A								
1617 - 0.014 - 0.014 - 0.014 - 0.014 - 0.01 (r	Minor Lane/Major Mvmt		B	NBTE	BLn1			
0.014 - (i) 7.3 0 A A A A (i) 0 - (ii)	Capacity (veh/h)		1617	1	287			
lay (s) 7.3 0 A A A Q(veh) 0 -	HCM Lane V/C Ratio		0.014	٠	0.067			
A A A Q(veh) 0 -	HCM Control Delay (s)		7.3		11.6			
- 0	HCM Lane LOS		∢		В			
	HCM 95th %tile Q(veh)		0	1	0.2			

Synchro 11 Report Page 9 HCM 6th TWSC SLR

Sweetspot (111 High Ridge Road) 8: High Ridge Rd & Cross Rd

2023 Combined Conditions Saturday Midday Peak

	Ø1 Ø2 Ø4																																															
•	SBR		7	7	1900	9	•	0.91				0	c	0 ;	Yes					- 3	0.91	∞	•	0																								
→	SBT	441	1012	1012	1900			0.91	1.00	0.999		2079	010	5079		_	30	300	8.7		0.91	1112	007	1120	-	į	52	0	0 10	5 2	ŽĮ Č	0.0	0.0	0.0														
←	NBT	₩.	985	982	1900			0.95	1.00			3539	0.954	33/6			30	212	4 δ.		0.91	1082	, ,	1084	0	•	0	0	0 9	5	Σ 5	0.0	0.0	0.0														
•	NBL		2	2	1900	0 0	25	0.95				0	•	0					-	- 3	0.91	2	•	ο.		Let	50	0	0 8	2 2	Σ 5	0.0	0.0	0.0														
>	EBR		30	30	0061	0 0		1.00				0	•	0 ;	Yes				۰	- 3	0.91	33	•	0																								
•	EB	>-	13	13	0061	> ~	- 52	1.00	0.99	0.905	0.985	1645	0.985	1645		33	e 5	409	9.3	0	0.91	14		4/	4		320	ဟု (φ 4	בַ כ	<u>й</u>	0.0	0.0	0.0	9	9	Ċ÷Ē		0.0	<u>~</u>	9	÷ E		0.0	314	פ אַ	Z 1 1	
	Lane Group	Lane Configurations	Traffic Volume (vph)	Future Volume (vph)	Ideal Flow (vphpl)	Storage Length (it)	Taper Length (ft)	Lane Util. Factor	Ped Bike Factor	芷	Flt Protected	Satd. Flow (prot)	Fit Permitted	Satd. Flow (perm)	Kight Tum on Ked	Satd. Flow (RTOR)	Link Speed (mph)	LINK Distance (π)	Iravel IIme (s)	Confl. Peds. (#/hr)	Peak Hour Factor	Adj. Flow (vph)	Shared Lane Traffic (%)	Lane Group Flow (vph)	Number of Detectors	Detector I emplate	Leading Detector (ft)	Trailing Detector (ft)	Detector 1 Position(ft)	Detector 1 Size(it)	Detector 1 Type Detector 1 Channel	Detector 1 Extend (s)	Detector 1 Queue (s)	Detector 1 Delay (s)	Detector 2 Position(ft)	Detector 2 Size(ft)	Detector 2 Type	Detector 2 Channel	Detector 2 Extend (s)	Detector 3 Position(ft)	Detector 3 Size(ft)	Detector 3 Type	Detector 3 Channel	Detector 3 Extend (s)	Detector 4 Position(ft)	Detector 4 Size(ft)	Detector 4 Type	Jeffector 4 Charmer

Detector 4 Channel
Lanes, Volumes, Timings
SLR

Sweetspot (111 High 8: High Ridge Rd & C

	^	<u> </u>	•	—	→	*				
Lane Group	BE	EBR	NBL	NBT	SBT	SBR	Ø	Ø2	94	
Detector 4 Extend (s)	0.0									
Turn Type	Prot		custom	ΑN	Α					
Protected Phases	2		က	23	12		_	2	4	
Permitted Phases			5							
Detector Phase	2		က	23	12					
Switch Phase										
Minimum Initial (s)	7.0		1:0				3.0	15.0	1.0	
Minimum Split (s)	11.9		7.0				7.0	20.0	29.0	
Total Split (s)	24.0		7.0				14.0	26.0	29.0	
Total Split (%)	24.0%		%0.7				14%	76%	29%	
Maximum Green (s)	19.1		1.0				10.0	21.0	25.0	
Yellow Time (s)	3.0		4.7				3.0	4.0	4.0	
All-Red Time (s)	1.9		1.3				1.0	1.0	0.0	
Lost Time Adjust (s)	0.0									
Total Lost Time (s)	4.9									
Lead/Lag			Lead				Lead	Lag	Lag	
Lead-Lag Optimize?			Yes				Yes	Yes	Yes	
Vehicle Extension (s)	1.0		3.0				ر. تخ	3.0	3.0	
Recall Mode	None		Max				Min	C-Min	None	
Walk Time (s)									7.0	
Flash Dont Walk (s)									18.0	
Pedestrian Calls (#/hr)									2	
Act Effct Green (s)	17.3			43.4	61.0					
Actuated g/C Ratio	0.17			0.43	0.61					
v/c Ratio	0.15			0.74	0.36					
Control Delay	17.1			12.9	12.6					
Queue Delay	0.0			0.0	0.0					
Total Delay	17.1			12.9	12.6					
TOS SOT	Ф			ш	ω					
Approach Delay	17.1			12.9	12.6					
Approach LOS	ш			ш	ш					
Queue Length 50th (ft)	7			33	105					
Queue Length 95th (ft)	33			#237	259					
Internal Link Dist (ft)	329			132	280					
Turn Bay Length (ft)										
Base Capacity (vph)	348			1468	3100					
Starvation Cap Reductn	0			0	0					
Spillback Cap Reductn	0			0	0					
Storage Cap Reductn	0			0	0					
Reduced v/c Ratio	0.14			0.74	0.36					
Informacijan Cummoni										

Area Type: Other
Cycle Length: 100
Actuated Cycle Length: 100
Offset 0 (0%), Referenced to phase 2:NBSB, Start of Yellow
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.74 Lanes, Volumes, Timings SLR

Sweetspot (111 High Ridge Road) 8: High Ridge Rd & Cross Rd

2023 Combined Conditions Saturday Midday Peak

Intersection LOS: B ICU Level of Service A Intersection Signal Delay; 12.8
Intersection Capacity Utilization 42.7%
Analysis Period (min) 7.8
Analysis Period (min) 7.8
Asily procestile volume exceeds capacity, queue may be longer:
Queue shown is maximum after two cycles.

Splits and Phases: 8: High Ridge Rd & Cross Rd #1 #8 #1 #8

T M OZ (R) #1 #8

#1 #8

Lanes, Volumes, Timings SLR

Synchro 11 Report Page 11